MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgra2 Structured version   Visualization version   GIF version

Theorem dfcgra2 25766
Description: This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 25745 is indeed equivalent with the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
Assertion
Ref Expression
dfcgra2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Distinct variable groups:   ,𝑎,𝑐,𝑑,𝑓   𝐴,𝑎,𝑐,𝑑,𝑓   𝐵,𝑎,𝑐,𝑑,𝑓   𝐶,𝑎,𝑐,𝑑,𝑓   𝐷,𝑎,𝑐,𝑑,𝑓   𝐸,𝑎,𝑐,𝑑,𝑓   𝐹,𝑎,𝑐,𝑑,𝑓   𝐺,𝑎,𝑐,𝑑,𝑓   𝐼,𝑎,𝑐,𝑑,𝑓   𝑃,𝑎,𝑐,𝑑,𝑓   𝜑,𝑎,𝑐,𝑑,𝑓

Proof of Theorem dfcgra2
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . . 5 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 eqid 2651 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgra2.a . . . . . 6 (𝜑𝐴𝑃)
76adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgra2.b . . . . . 6 (𝜑𝐵𝑃)
98adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgra2.c . . . . . 6 (𝜑𝐶𝑃)
1110adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
1312adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgra2.f . . . . . 6 (𝜑𝐹𝑃)
1716adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 simpr 476 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
191, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane1 25749 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane2 25750 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
2120necomd 2878 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐵)
2219, 21jca 553 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴𝐵𝐶𝐵))
231, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane3 25751 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐷)
2423necomd 2878 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝐸)
251, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane4 25752 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐹)
2625necomd 2878 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝐸)
2724, 26jca 553 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐷𝐸𝐹𝐸))
28 simprl 809 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
29 simprr 811 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
305ad5antr 773 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐺 ∈ TarskiG)
31 simp-5r 826 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝑃)
329ad5antr 773 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑃)
33 simp-4r 824 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝑃)
34 simpllr 815 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑𝑃)
3515ad5antr 773 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑃)
36 simplr 807 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓𝑃)
3717ad5antr 773 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝑃)
3813ad5antr 773 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝑃)
3911ad5antr 773 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝑃)
407ad5antr 773 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝑃)
4118ad5antr 773 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
421, 2, 30, 3, 40, 32, 39, 38, 35, 37, 41cgracom 25759 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
4328simplld 806 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝐵𝐼𝑎))
44 dfcgra2.m . . . . . . . . . . . . . . . . . 18 = (dist‘𝐺)
4519ad5antr 773 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝐵)
461, 44, 2, 30, 32, 40, 31, 43, 45tgbtwnne 25430 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑎)
471, 2, 3, 32, 31, 40, 30, 40, 43, 46, 45btwnhl1 25552 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴((hlG‘𝐺)‘𝐵)𝑎)
481, 2, 3, 40, 31, 32, 30, 47hlcomd 25544 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝐴)
491, 2, 3, 30, 38, 35, 37, 40, 32, 39, 42, 31, 48cgrahl1 25753 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝐶”⟩)
5028simprld 810 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝐵𝐼𝑐))
5121ad5antr 773 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝐵)
521, 44, 2, 30, 32, 39, 33, 50, 51tgbtwnne 25430 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
531, 2, 3, 32, 33, 39, 30, 40, 50, 52, 51btwnhl1 25552 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶((hlG‘𝐺)‘𝐵)𝑐)
541, 2, 3, 39, 33, 32, 30, 53hlcomd 25544 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝐶)
551, 2, 3, 30, 38, 35, 37, 31, 32, 39, 49, 33, 54cgrahl2 25754 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝑐”⟩)
561, 2, 30, 3, 38, 35, 37, 31, 32, 33, 55cgracom 25759 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
5729simplld 806 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷 ∈ (𝐸𝐼𝑑))
5824ad5antr 773 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝐸)
591, 44, 2, 30, 35, 38, 34, 57, 58tgbtwnne 25430 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑑)
601, 2, 3, 35, 34, 38, 30, 40, 57, 59, 58btwnhl1 25552 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
611, 2, 3, 38, 34, 35, 30, 60hlcomd 25544 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
621, 2, 3, 30, 31, 32, 33, 38, 35, 37, 56, 34, 61cgrahl1 25753 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝐹”⟩)
6329simprld 810 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹 ∈ (𝐸𝐼𝑓))
6426ad5antr 773 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝐸)
651, 44, 2, 30, 35, 37, 36, 63, 64tgbtwnne 25430 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑓)
661, 2, 3, 35, 36, 37, 30, 40, 63, 65, 64btwnhl1 25552 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
671, 2, 3, 37, 36, 35, 30, 66hlcomd 25544 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
681, 2, 3, 30, 31, 32, 33, 34, 35, 37, 62, 36, 67cgrahl2 25754 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
691, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68cgrane1 25749 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝐵)
701, 2, 3, 31, 40, 32, 30, 69hlid 25549 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝑎)
711, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68cgrane2 25750 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
7271necomd 2878 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝐵)
731, 2, 3, 33, 40, 32, 30, 72hlid 25549 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝑐)
741, 44, 2, 30, 32, 40, 31, 43tgbtwncom 25428 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝑎𝐼𝐵))
7528simplrd 808 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝑎) = (𝐸 𝐷))
761, 44, 2, 30, 40, 31, 35, 38, 75tgcgrcoml 25419 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐴) = (𝐸 𝐷))
7729simplrd 808 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐷 𝑑) = (𝐵 𝐴))
7877eqcomd 2657 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐴) = (𝐷 𝑑))
791, 44, 2, 30, 32, 40, 38, 34, 78tgcgrcoml 25419 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝐵) = (𝐷 𝑑))
801, 44, 2, 30, 31, 40, 32, 35, 38, 34, 74, 57, 76, 79tgcgrextend 25425 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐵) = (𝐸 𝑑))
811, 44, 2, 30, 31, 32, 35, 34, 80tgcgrcoml 25419 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑎) = (𝐸 𝑑))
821, 44, 2, 30, 32, 39, 33, 50tgbtwncom 25428 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝑐𝐼𝐵))
8328simprrd 812 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝑐) = (𝐸 𝐹))
841, 44, 2, 30, 39, 33, 35, 37, 83tgcgrcoml 25419 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐶) = (𝐸 𝐹))
8529simprrd 812 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐹 𝑓) = (𝐵 𝐶))
8685eqcomd 2657 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐶) = (𝐹 𝑓))
871, 44, 2, 30, 32, 39, 37, 36, 86tgcgrcoml 25419 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝐵) = (𝐹 𝑓))
881, 44, 2, 30, 33, 39, 32, 35, 37, 36, 82, 63, 84, 87tgcgrextend 25425 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐵) = (𝐸 𝑓))
891, 44, 2, 30, 33, 32, 35, 36, 88tgcgrcoml 25419 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑐) = (𝐸 𝑓))
901, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68, 31, 44, 33, 70, 73, 81, 89cgracgr 25755 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝑐) = (𝑑 𝑓))
9128, 29, 903jca 1261 . . . . . . . 8 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
9291ex 449 . . . . . . 7 ((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9392reximdva 3046 . . . . . 6 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) → (∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9493reximdva 3046 . . . . 5 ((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9594imp 444 . . . 4 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
961, 44, 2, 4, 8, 6, 14, 12axtgsegcon 25408 . . . . . . . 8 (𝜑 → ∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)))
971, 44, 2, 4, 8, 10, 14, 16axtgsegcon 25408 . . . . . . . 8 (𝜑 → ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))
98 reeanv 3136 . . . . . . . 8 (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ (∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
9996, 97, 98sylanbrc 699 . . . . . . 7 (𝜑 → ∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
1001, 44, 2, 4, 14, 12, 8, 6axtgsegcon 25408 . . . . . . . 8 (𝜑 → ∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)))
1011, 44, 2, 4, 14, 16, 8, 10axtgsegcon 25408 . . . . . . . 8 (𝜑 → ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))
102 reeanv 3136 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ (∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
103100, 101, 102sylanbrc 699 . . . . . . 7 (𝜑 → ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10499, 103jca 553 . . . . . 6 (𝜑 → (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
105 r19.41vv 3120 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
106 ancom 465 . . . . . . . . . 10 ((((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1071062rexbii 3071 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
108 ancom 465 . . . . . . . . 9 ((∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
109105, 107, 1083bitr3i 290 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1101092rexbii 3071 . . . . . . 7 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
111 r19.41vv 3120 . . . . . . 7 (∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
112110, 111bitr2i 265 . . . . . 6 ((∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
113104, 112sylib 208 . . . . 5 (𝜑 → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
114113adantr 480 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
11595, 114reximddv2 3049 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
11622, 27, 1153jca 1261 . 2 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
117 df-3an 1056 . . 3 (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ↔ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
1184ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐺 ∈ TarskiG)
11912ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝑃)
12014ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑃)
12116ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝑃)
1226ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝑃)
1238ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑃)
12410ad6antr 777 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝑃)
125 simp-4r 824 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑦𝑃)
126 simp-5r 826 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑥𝑃)
127 simpllr 815 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧𝑃)
128 simplr 807 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡𝑃)
129 eqid 2651 . . . . . . . . . . . . . 14 (cgrG‘𝐺) = (cgrG‘𝐺)
130 simpr1 1087 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
131130simplld 806 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴 ∈ (𝐵𝐼𝑥))
132 simpr2 1088 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
133132simplld 806 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝐸𝐼𝑧))
1341, 44, 2, 118, 120, 119, 127, 133tgbtwncom 25428 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝑧𝐼𝐸))
135132simplrd 808 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐷 𝑧) = (𝐵 𝐴))
136135eqcomd 2657 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝐷 𝑧))
1371, 44, 2, 118, 123, 122, 119, 127, 136tgcgrcomr 25418 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝑧 𝐷))
138130simplrd 808 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐸 𝐷))
1391, 44, 2, 118, 122, 126, 120, 119, 138tgcgrcomr 25418 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐷 𝐸))
1401, 44, 2, 118, 123, 122, 126, 127, 119, 120, 131, 134, 137, 139tgcgrextend 25425 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑥) = (𝑧 𝐸))
1411, 44, 2, 118, 123, 126, 127, 120, 140tgcgrcoml 25419 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝐵) = (𝑧 𝐸))
142130simprld 810 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝐵𝐼𝑦))
1431, 44, 2, 118, 123, 124, 125, 142tgbtwncom 25428 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝑦𝐼𝐵))
144132simprld 810 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹 ∈ (𝐸𝐼𝑡))
145130simprrd 812 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝑦) = (𝐸 𝐹))
1461, 44, 2, 118, 124, 125, 120, 121, 145tgcgrcoml 25419 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐶) = (𝐸 𝐹))
147132simprrd 812 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐹 𝑡) = (𝐵 𝐶))
148147eqcomd 2657 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐶) = (𝐹 𝑡))
1491, 44, 2, 118, 123, 124, 121, 128, 148tgcgrcoml 25419 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝐵) = (𝐹 𝑡))
1501, 44, 2, 118, 125, 124, 123, 120, 121, 128, 143, 144, 146, 149tgcgrextend 25425 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐵) = (𝐸 𝑡))
1511, 44, 2, 118, 125, 123, 120, 128, 150tgcgrcoml 25419 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑦) = (𝐸 𝑡))
152 simpr3 1089 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝑦) = (𝑧 𝑡))
1531, 44, 2, 118, 126, 125, 127, 128, 152tgcgrcomlr 25420 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝑥) = (𝑡 𝑧))
1541, 44, 129, 118, 126, 123, 125, 127, 120, 128, 141, 151, 153trgcgr 25456 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrG‘𝐺)⟨“𝑧𝐸𝑡”⟩)
155 simp-6r 828 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)))
156155simprld 810 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝐸)
1571, 44, 2, 118, 120, 119, 127, 133, 156tgbtwnne 25430 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑧)
1581, 2, 3, 120, 127, 119, 118, 123, 133, 157, 156btwnhl1 25552 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷((hlG‘𝐺)‘𝐸)𝑧)
1591, 2, 3, 119, 127, 120, 118, 158hlcomd 25544 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧((hlG‘𝐺)‘𝐸)𝐷)
160155simprrd 812 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝐸)
1611, 44, 2, 118, 120, 121, 128, 144, 160tgbtwnne 25430 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑡)
1621, 2, 3, 120, 128, 121, 118, 123, 144, 161, 160btwnhl1 25552 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹((hlG‘𝐺)‘𝐸)𝑡)
1631, 2, 3, 121, 128, 120, 118, 162hlcomd 25544 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡((hlG‘𝐺)‘𝐸)𝐹)
1641, 2, 3, 118, 126, 123, 125, 119, 120, 121, 127, 128, 154, 159, 163iscgrad 25748 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1651, 2, 118, 3, 126, 123, 125, 119, 120, 121, 164cgracom 25759 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝐵𝑦”⟩)
166155simplld 806 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝐵)
1671, 44, 2, 118, 123, 122, 126, 131, 166tgbtwnne 25430 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑥)
1681, 2, 3, 123, 126, 122, 118, 122, 131, 167, 166btwnhl1 25552 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴((hlG‘𝐺)‘𝐵)𝑥)
1691, 2, 3, 118, 119, 120, 121, 126, 123, 125, 165, 122, 168cgrahl1 25753 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝑦”⟩)
170155simplrd 808 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝐵)
1711, 44, 2, 118, 123, 124, 125, 142, 170tgbtwnne 25430 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑦)
1721, 2, 3, 123, 125, 124, 118, 122, 142, 171, 170btwnhl1 25552 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶((hlG‘𝐺)‘𝐵)𝑦)
1731, 2, 3, 118, 119, 120, 121, 122, 123, 125, 169, 124, 172cgrahl2 25754 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1741, 2, 118, 3, 119, 120, 121, 122, 123, 124, 173cgracom 25759 . . . . . . . 8 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
175174adantl3r 801 . . . . . . 7 ((((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
176 simpr 476 . . . . . . . 8 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
177 eqidd 2652 . . . . . . . . . . . . 13 (𝑑 = 𝑧𝐷 = 𝐷)
178 oveq2 6698 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐸𝐼𝑑) = (𝐸𝐼𝑧))
179177, 178eleq12d 2724 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝐷 ∈ (𝐸𝐼𝑑) ↔ 𝐷 ∈ (𝐸𝐼𝑧)))
180 oveq2 6698 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐷 𝑑) = (𝐷 𝑧))
181 eqidd 2652 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐵 𝐴) = (𝐵 𝐴))
182180, 181eqeq12d 2666 . . . . . . . . . . . 12 (𝑑 = 𝑧 → ((𝐷 𝑑) = (𝐵 𝐴) ↔ (𝐷 𝑧) = (𝐵 𝐴)))
183179, 182anbi12d 747 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
184 biidd 252 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
185183, 184anbi12d 747 . . . . . . . . . 10 (𝑑 = 𝑧 → (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
186 eqidd 2652 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑥 𝑦) = (𝑥 𝑦))
187 oveq1 6697 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑑 𝑓) = (𝑧 𝑓))
188186, 187eqeq12d 2666 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑥 𝑦) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑓)))
189185, 1883anbi23d 1442 . . . . . . . . 9 (𝑑 = 𝑧 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓))))
190 biidd 252 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
191 eqidd 2652 . . . . . . . . . . . . 13 (𝑓 = 𝑡𝐹 = 𝐹)
192 oveq2 6698 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐸𝐼𝑓) = (𝐸𝐼𝑡))
193191, 192eleq12d 2724 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝐹 ∈ (𝐸𝐼𝑓) ↔ 𝐹 ∈ (𝐸𝐼𝑡)))
194 oveq2 6698 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐹 𝑓) = (𝐹 𝑡))
195 eqidd 2652 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐵 𝐶) = (𝐵 𝐶))
196194, 195eqeq12d 2666 . . . . . . . . . . . 12 (𝑓 = 𝑡 → ((𝐹 𝑓) = (𝐵 𝐶) ↔ (𝐹 𝑡) = (𝐵 𝐶)))
197193, 196anbi12d 747 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
198190, 197anbi12d 747 . . . . . . . . . 10 (𝑓 = 𝑡 → (((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶)))))
199 eqidd 2652 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑥 𝑦) = (𝑥 𝑦))
200 oveq2 6698 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑧 𝑓) = (𝑧 𝑡))
201199, 200eqeq12d 2666 . . . . . . . . . 10 (𝑓 = 𝑡 → ((𝑥 𝑦) = (𝑧 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑡)))
202198, 2013anbi23d 1442 . . . . . . . . 9 (𝑓 = 𝑡 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))))
203189, 202cbvrex2v 3210 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
204176, 203sylib 208 . . . . . . 7 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
205175, 204r19.29vva 3110 . . . . . 6 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
206205adantl3r 801 . . . . 5 ((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
207 simpr 476 . . . . . 6 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
208 eqidd 2652 . . . . . . . . . . . 12 (𝑎 = 𝑥𝐴 = 𝐴)
209 oveq2 6698 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐵𝐼𝑎) = (𝐵𝐼𝑥))
210208, 209eleq12d 2724 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐴 ∈ (𝐵𝐼𝑎) ↔ 𝐴 ∈ (𝐵𝐼𝑥)))
211 oveq2 6698 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐴 𝑎) = (𝐴 𝑥))
212 eqidd 2652 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐸 𝐷) = (𝐸 𝐷))
213211, 212eqeq12d 2666 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐴 𝑎) = (𝐸 𝐷) ↔ (𝐴 𝑥) = (𝐸 𝐷)))
214210, 213anbi12d 747 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
215 biidd 252 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
216214, 215anbi12d 747 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
217 oveq1 6697 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 𝑐) = (𝑥 𝑐))
218 eqidd 2652 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑑 𝑓) = (𝑑 𝑓))
219217, 218eqeq12d 2666 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑐) = (𝑑 𝑓)))
220216, 2193anbi13d 1441 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
2212202rexbidv 3086 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
222 biidd 252 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
223 eqidd 2652 . . . . . . . . . . . 12 (𝑐 = 𝑦𝐶 = 𝐶)
224 oveq2 6698 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐵𝐼𝑐) = (𝐵𝐼𝑦))
225223, 224eleq12d 2724 . . . . . . . . . . 11 (𝑐 = 𝑦 → (𝐶 ∈ (𝐵𝐼𝑐) ↔ 𝐶 ∈ (𝐵𝐼𝑦)))
226 oveq2 6698 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐶 𝑐) = (𝐶 𝑦))
227 eqidd 2652 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐸 𝐹) = (𝐸 𝐹))
228226, 227eqeq12d 2666 . . . . . . . . . . 11 (𝑐 = 𝑦 → ((𝐶 𝑐) = (𝐸 𝐹) ↔ (𝐶 𝑦) = (𝐸 𝐹)))
229225, 228anbi12d 747 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
230222, 229anbi12d 747 . . . . . . . . 9 (𝑐 = 𝑦 → (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹)))))
231 oveq2 6698 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑥 𝑐) = (𝑥 𝑦))
232 eqidd 2652 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑑 𝑓) = (𝑑 𝑓))
233231, 232eqeq12d 2666 . . . . . . . . 9 (𝑐 = 𝑦 → ((𝑥 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑑 𝑓)))
234230, 2333anbi13d 1441 . . . . . . . 8 (𝑐 = 𝑦 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
2352342rexbidv 3086 . . . . . . 7 (𝑐 = 𝑦 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
236221, 235cbvrex2v 3210 . . . . . 6 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
237207, 236sylib 208 . . . . 5 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
238206, 237r19.29vva 3110 . . . 4 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
239238anasss 680 . . 3 ((𝜑 ∧ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
240117, 239sylan2b 491 . 2 ((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
241116, 240impbida 895 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  ⟨“cs3 13633  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  cgrGccgrg 25450  hlGchlg 25540  cgrAccgra 25744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397  df-cgrg 25451  df-leg 25523  df-hlg 25541  df-cgra 25745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator