![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfbi2 | Structured version Visualization version GIF version |
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 203 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | df-an 385 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
3 | 1, 2 | bitr4i 267 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: dfbi 662 pm4.71 663 pm5.17 950 xor 953 dfbi3 1018 albiim 1856 nfbid 1872 nfbidOLD 2278 sbbi 2429 ralbiim 3098 reu8 3435 sseq2 3660 soeq2 5084 fun11 6001 dffo3 6414 isnsg2 17671 isarchi 29864 axextprim 31704 biimpexp 31723 axextndbi 31834 ifpdfbi 38135 ifpidg 38153 ifp1bi 38164 ifpbibib 38172 rp-fakeanorass 38175 frege54cor0a 38474 dffo3f 39678 aibandbiaiffaiffb 41382 aibandbiaiaiffb 41383 |
Copyright terms: Public domain | W3C validator |