![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfateq12d | Structured version Visualization version GIF version |
Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
dfateq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
dfateq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
dfateq12d | ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfateq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dfateq12d.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | dmeqd 5464 | . . . 4 ⊢ (𝜑 → dom 𝐹 = dom 𝐺) |
4 | 1, 3 | eleq12d 2843 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝐹 ↔ 𝐵 ∈ dom 𝐺)) |
5 | 1 | sneqd 4326 | . . . . 5 ⊢ (𝜑 → {𝐴} = {𝐵}) |
6 | 2, 5 | reseq12d 5535 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝐴}) = (𝐺 ↾ {𝐵})) |
7 | 6 | funeqd 6053 | . . 3 ⊢ (𝜑 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun (𝐺 ↾ {𝐵}))) |
8 | 4, 7 | anbi12d 608 | . 2 ⊢ (𝜑 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵})))) |
9 | df-dfat 41710 | . 2 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 41710 | . 2 ⊢ (𝐺 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝐵}))) | |
11 | 8, 9, 10 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {csn 4314 dom cdm 5249 ↾ cres 5251 Fun wfun 6025 defAt wdfat 41707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-fun 6033 df-dfat 41710 |
This theorem is referenced by: afveq12d 41727 |
Copyright terms: Public domain | W3C validator |