![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaimafn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6396. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfaimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfaimafn 41720 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) | |
2 | iunab 4706 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦} | |
3 | 1, 2 | syl6eqr 2800 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
4 | df-sn 4310 | . . . . 5 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} | |
5 | eqcom 2755 | . . . . . 6 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
6 | 5 | abbii 2865 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
7 | 4, 6 | eqtri 2770 | . . . 4 ⊢ {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}) |
9 | 8 | iuneq2i 4679 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} |
10 | 3, 9 | syl6eqr 2800 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 {cab 2734 ∃wrex 3039 ⊆ wss 3703 {csn 4309 ∪ ciun 4660 dom cdm 5254 “ cima 5257 Fun wfun 6031 '''cafv 41669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-fv 6045 df-dfat 41671 df-afv 41672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |