MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacfin7 Structured version   Visualization version   GIF version

Theorem dfacfin7 9259
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
dfacfin7 (CHOICE ↔ FinVII = Fin)

Proof of Theorem dfacfin7
StepHypRef Expression
1 ssequn2 3819 . 2 ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
2 dfac10 8997 . . . 4 (CHOICE ↔ dom card = V)
3 finnum 8812 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
43ssriv 3640 . . . . . 6 Fin ⊆ dom card
5 ssequn2 3819 . . . . . 6 (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card)
64, 5mpbi 220 . . . . 5 (dom card ∪ Fin) = dom card
76eqeq1i 2656 . . . 4 ((dom card ∪ Fin) = V ↔ dom card = V)
82, 7bitr4i 267 . . 3 (CHOICE ↔ (dom card ∪ Fin) = V)
9 ssv 3658 . . . 4 (dom card ∪ Fin) ⊆ V
10 eqss 3651 . . . 4 ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin)))
119, 10mpbiran 973 . . 3 ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin))
12 ssundif 4085 . . 3 (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin)
138, 11, 123bitri 286 . 2 (CHOICE ↔ (V ∖ dom card) ⊆ Fin)
14 dffin7-2 9258 . . 3 FinVII = (Fin ∪ (V ∖ dom card))
1514eqeq1i 2656 . 2 (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin)
161, 13, 153bitr4i 292 1 (CHOICE ↔ FinVII = Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  Vcvv 3231  cdif 3604  cun 3605  wss 3607  dom cdm 5143  Fincfn 7997  cardccrd 8799  CHOICEwac 8976  FinVIIcfin7 9144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-recs 7513  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-ac 8977  df-fin7 9151
This theorem is referenced by:  fin71ac  9393
  Copyright terms: Public domain W3C validator