![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfacfin7 | Structured version Visualization version GIF version |
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
dfacfin7 | ⊢ (CHOICE ↔ FinVII = Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 3819 | . 2 ⊢ ((V ∖ dom card) ⊆ Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) | |
2 | dfac10 8997 | . . . 4 ⊢ (CHOICE ↔ dom card = V) | |
3 | finnum 8812 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom card) | |
4 | 3 | ssriv 3640 | . . . . . 6 ⊢ Fin ⊆ dom card |
5 | ssequn2 3819 | . . . . . 6 ⊢ (Fin ⊆ dom card ↔ (dom card ∪ Fin) = dom card) | |
6 | 4, 5 | mpbi 220 | . . . . 5 ⊢ (dom card ∪ Fin) = dom card |
7 | 6 | eqeq1i 2656 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ dom card = V) |
8 | 2, 7 | bitr4i 267 | . . 3 ⊢ (CHOICE ↔ (dom card ∪ Fin) = V) |
9 | ssv 3658 | . . . 4 ⊢ (dom card ∪ Fin) ⊆ V | |
10 | eqss 3651 | . . . 4 ⊢ ((dom card ∪ Fin) = V ↔ ((dom card ∪ Fin) ⊆ V ∧ V ⊆ (dom card ∪ Fin))) | |
11 | 9, 10 | mpbiran 973 | . . 3 ⊢ ((dom card ∪ Fin) = V ↔ V ⊆ (dom card ∪ Fin)) |
12 | ssundif 4085 | . . 3 ⊢ (V ⊆ (dom card ∪ Fin) ↔ (V ∖ dom card) ⊆ Fin) | |
13 | 8, 11, 12 | 3bitri 286 | . 2 ⊢ (CHOICE ↔ (V ∖ dom card) ⊆ Fin) |
14 | dffin7-2 9258 | . . 3 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | |
15 | 14 | eqeq1i 2656 | . 2 ⊢ (FinVII = Fin ↔ (Fin ∪ (V ∖ dom card)) = Fin) |
16 | 1, 13, 15 | 3bitr4i 292 | 1 ⊢ (CHOICE ↔ FinVII = Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 Vcvv 3231 ∖ cdif 3604 ∪ cun 3605 ⊆ wss 3607 dom cdm 5143 Fincfn 7997 cardccrd 8799 CHOICEwac 8976 FinVIIcfin7 9144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-om 7108 df-wrecs 7452 df-recs 7513 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-ac 8977 df-fin7 9151 |
This theorem is referenced by: fin71ac 9393 |
Copyright terms: Public domain | W3C validator |