![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac8c | Structured version Visualization version GIF version |
Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8c | ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑟𝑦)) = (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑟𝑦)) | |
2 | 1 | dfac8clem 9055 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1852 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∖ cdif 3720 ∅c0 4063 {csn 4316 ∪ cuni 4574 class class class wbr 4786 ↦ cmpt 4863 We wwe 5207 ‘cfv 6031 ℩crio 6753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-riota 6754 |
This theorem is referenced by: ween 9058 ac5num 9059 dfac8 9159 vitali 23601 |
Copyright terms: Public domain | W3C validator |