![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac8b | Structured version Visualization version GIF version |
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dfac8b | ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 8983 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
2 | bren 8122 | . . 3 ⊢ ((card‘𝐴) ≈ 𝐴 ↔ ∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴) |
4 | sqxpexg 7114 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝐴 × 𝐴) ∈ V) | |
5 | incom 3956 | . . . . . 6 ⊢ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)}) | |
6 | inex1g 4936 | . . . . . 6 ⊢ ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)}) ∈ V) | |
7 | 5, 6 | syl5eqel 2854 | . . . . 5 ⊢ ((𝐴 × 𝐴) ∈ V → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ dom card → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V) |
9 | f1ocnv 6291 | . . . . . 6 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(card‘𝐴)) | |
10 | cardon 8974 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
11 | 10 | onordi 5974 | . . . . . . 7 ⊢ Ord (card‘𝐴) |
12 | ordwe 5878 | . . . . . . 7 ⊢ (Ord (card‘𝐴) → E We (card‘𝐴)) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ E We (card‘𝐴) |
14 | eqid 2771 | . . . . . . 7 ⊢ {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} = {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} | |
15 | 14 | f1owe 6749 | . . . . . 6 ⊢ (◡𝑓:𝐴–1-1-onto→(card‘𝐴) → ( E We (card‘𝐴) → {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴)) |
16 | 9, 13, 15 | mpisyl 21 | . . . . 5 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → {〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴) |
17 | weinxp 5325 | . . . . 5 ⊢ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} We 𝐴 ↔ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴) | |
18 | 16, 17 | sylib 208 | . . . 4 ⊢ (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴) |
19 | weeq1 5238 | . . . . 5 ⊢ (𝑥 = ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) → (𝑥 We 𝐴 ↔ ({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)) | |
20 | 19 | spcegv 3445 | . . . 4 ⊢ (({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) ∈ V → (({〈𝑧, 𝑤〉 ∣ (◡𝑓‘𝑧) E (◡𝑓‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑥 𝑥 We 𝐴)) |
21 | 8, 18, 20 | syl2im 40 | . . 3 ⊢ (𝐴 ∈ dom card → (𝑓:(card‘𝐴)–1-1-onto→𝐴 → ∃𝑥 𝑥 We 𝐴)) |
22 | 21 | exlimdv 2013 | . 2 ⊢ (𝐴 ∈ dom card → (∃𝑓 𝑓:(card‘𝐴)–1-1-onto→𝐴 → ∃𝑥 𝑥 We 𝐴)) |
23 | 3, 22 | mpd 15 | 1 ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1852 ∈ wcel 2145 Vcvv 3351 ∩ cin 3722 class class class wbr 4787 {copab 4847 E cep 5162 We wwe 5208 × cxp 5248 ◡ccnv 5249 dom cdm 5250 Ord word 5864 –1-1-onto→wf1o 6029 ‘cfv 6030 ≈ cen 8110 cardccrd 8965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-en 8114 df-card 8969 |
This theorem is referenced by: ween 9062 ac5num 9063 dfac8 9163 |
Copyright terms: Public domain | W3C validator |