MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2b Structured version   Visualization version   GIF version

Theorem dfac2b 9153
Description: Axiom of Choice (first form) of [Enderton] p. 49 implies our Axiom of Choice (in the form of ac3 9486). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elneq 8659 and preleq 8675 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 9152.) (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.)
Assertion
Ref Expression
dfac2b (CHOICE → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem dfac2b
Dummy variables 𝑓 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9144 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 nfra1 3090 . . . . . 6 𝑧𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
3 rsp 3078 . . . . . . . . . . . 12 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑧𝑥 → (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
4 equid 2097 . . . . . . . . . . . . . . . . . 18 𝑧 = 𝑧
5 neeq1 3005 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅))
6 eqeq1 2775 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 = 𝑧𝑧 = 𝑧))
75, 6anbi12d 616 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑧 → ((𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) ↔ (𝑧 ≠ ∅ ∧ 𝑧 = 𝑧)))
87rspcev 3460 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥 ∧ (𝑧 ≠ ∅ ∧ 𝑧 = 𝑧)) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧))
94, 8mpanr2 684 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧))
10 fveq2 6332 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
1110preq1d 4410 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → {(𝑓𝑢), 𝑢} = {(𝑓𝑧), 𝑢})
12 preq2 4405 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → {(𝑓𝑧), 𝑢} = {(𝑓𝑧), 𝑧})
1311, 12eqtr2d 2806 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑧 → {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢})
1413anim2i 603 . . . . . . . . . . . . . . . . . 18 ((𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) → (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
1514reximi 3159 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
169, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
17 prex 5037 . . . . . . . . . . . . . . . . 17 {(𝑓𝑧), 𝑧} ∈ V
18 eqeq1 2775 . . . . . . . . . . . . . . . . . . 19 (𝑔 = {(𝑓𝑧), 𝑧} → (𝑔 = {(𝑓𝑢), 𝑢} ↔ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
1918anbi2d 614 . . . . . . . . . . . . . . . . . 18 (𝑔 = {(𝑓𝑧), 𝑧} → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢})))
2019rexbidv 3200 . . . . . . . . . . . . . . . . 17 (𝑔 = {(𝑓𝑧), 𝑧} → (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢})))
2117, 20elab 3501 . . . . . . . . . . . . . . . 16 ({(𝑓𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
2216, 21sylibr 224 . . . . . . . . . . . . . . 15 ((𝑧𝑥𝑧 ≠ ∅) → {(𝑓𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})})
23 vex 3354 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
2423prid2 4434 . . . . . . . . . . . . . . . 16 𝑧 ∈ {(𝑓𝑧), 𝑧}
25 fvex 6342 . . . . . . . . . . . . . . . . 17 (𝑓𝑧) ∈ V
2625prid1 4433 . . . . . . . . . . . . . . . 16 (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧}
2724, 26pm3.2i 447 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑓𝑧), 𝑧} ∧ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧})
28 eleq2 2839 . . . . . . . . . . . . . . . . 17 (𝑣 = {(𝑓𝑧), 𝑧} → (𝑧𝑣𝑧 ∈ {(𝑓𝑧), 𝑧}))
29 eleq2 2839 . . . . . . . . . . . . . . . . 17 (𝑣 = {(𝑓𝑧), 𝑧} → ((𝑓𝑧) ∈ 𝑣 ↔ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧}))
3028, 29anbi12d 616 . . . . . . . . . . . . . . . 16 (𝑣 = {(𝑓𝑧), 𝑧} → ((𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣) ↔ (𝑧 ∈ {(𝑓𝑧), 𝑧} ∧ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧})))
3130rspcev 3460 . . . . . . . . . . . . . . 15 (({(𝑓𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧 ∈ {(𝑓𝑧), 𝑧} ∧ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧})) → ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣))
3222, 27, 31sylancl 574 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣))
33 eleq1 2838 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑧) → (𝑤𝑧 ↔ (𝑓𝑧) ∈ 𝑧))
34 eleq1 2838 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑧) → (𝑤𝑣 ↔ (𝑓𝑧) ∈ 𝑣))
3534anbi2d 614 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑧) → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣)))
3635rexbidv 3200 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑧) → (∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣)))
3733, 36anbi12d 616 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑧) → ((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ↔ ((𝑓𝑧) ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣))))
3825, 37spcev 3451 . . . . . . . . . . . . . 14 (((𝑓𝑧) ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣)) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
3932, 38sylan2 580 . . . . . . . . . . . . 13 (((𝑓𝑧) ∈ 𝑧 ∧ (𝑧𝑥𝑧 ≠ ∅)) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
4039ex 397 . . . . . . . . . . . 12 ((𝑓𝑧) ∈ 𝑧 → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
413, 40syl8 76 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))))
4241impd 396 . . . . . . . . . 10 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))))
4342pm2.43d 53 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
44 df-rex 3067 . . . . . . . . . . . . 13 (∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ ∃𝑣(𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧𝑣𝑤𝑣)))
45 vex 3354 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
46 eqeq1 2775 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑣 → (𝑔 = {(𝑓𝑢), 𝑢} ↔ 𝑣 = {(𝑓𝑢), 𝑢}))
4746anbi2d 614 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑣 → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢})))
4847rexbidv 3200 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑣 → (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢})))
4945, 48elab 3501 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}))
50 neeq1 3005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑢 → (𝑧 ≠ ∅ ↔ 𝑢 ≠ ∅))
51 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑢 → (𝑓𝑧) = (𝑓𝑢))
5251eleq1d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑧))
53 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑢 → ((𝑓𝑢) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
5452, 53bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
5550, 54imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑢 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑢 ≠ ∅ → (𝑓𝑢) ∈ 𝑢)))
5655rspccv 3457 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑓𝑢) ∈ 𝑢)))
57 elneq 8659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤𝑧𝑤𝑧)
5857neneqd 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤𝑧 → ¬ 𝑤 = 𝑧)
59 vex 3354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑤 ∈ V
60 neqne 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑤 = 𝑧𝑤𝑧)
61 prel12g 4530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑤𝑧) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢})))
6259, 23, 60, 61mp3an12i 1576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑤 = 𝑧 → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢})))
63 ancom 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑤𝑣𝑧𝑣) ↔ (𝑧𝑣𝑤𝑣))
64 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = {(𝑓𝑢), 𝑢} → (𝑤𝑣𝑤 ∈ {(𝑓𝑢), 𝑢}))
65 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = {(𝑓𝑢), 𝑢} → (𝑧𝑣𝑧 ∈ {(𝑓𝑢), 𝑢}))
6664, 65anbi12d 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑤𝑣𝑧𝑣) ↔ (𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢})))
6763, 66syl5rbbr 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢}) ↔ (𝑧𝑣𝑤𝑣)))
6862, 67sylan9bbr 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑣 = {(𝑓𝑢), 𝑢} ∧ ¬ 𝑤 = 𝑧) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑧𝑣𝑤𝑣)))
6958, 68sylan2 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑣 = {(𝑓𝑢), 𝑢} ∧ 𝑤𝑧) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑧𝑣𝑤𝑣)))
7069adantrr 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑣 = {(𝑓𝑢), 𝑢} ∧ (𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢)) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑧𝑣𝑤𝑣)))
7170pm5.32da 568 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = {(𝑓𝑢), 𝑢} → (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ {𝑤, 𝑧} = {(𝑓𝑢), 𝑢}) ↔ ((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ (𝑧𝑣𝑤𝑣))))
7223preleq 8675 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ {𝑤, 𝑧} = {(𝑓𝑢), 𝑢}) → (𝑤 = (𝑓𝑢) ∧ 𝑧 = 𝑢))
7371, 72syl6bir 244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = {(𝑓𝑢), 𝑢} → (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ (𝑧𝑣𝑤𝑣)) → (𝑤 = (𝑓𝑢) ∧ 𝑧 = 𝑢)))
7451eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑢 → (𝑤 = (𝑓𝑧) ↔ 𝑤 = (𝑓𝑢)))
7574biimparc 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 = (𝑓𝑢) ∧ 𝑧 = 𝑢) → 𝑤 = (𝑓𝑧))
7673, 75syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = {(𝑓𝑢), 𝑢} → (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
7776exp4c 419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = {(𝑓𝑢), 𝑢} → (𝑤𝑧 → ((𝑓𝑢) ∈ 𝑢 → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
7877com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑢) ∈ 𝑢 → (𝑤𝑧 → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
7956, 78syl8 76 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑤𝑧 → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))))
8079com4r 94 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤𝑧 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))))
8180imp 393 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧))))))
8281imp4a 409 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑢𝑥 → ((𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8382com3l 89 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑥 → ((𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}) → ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8483rexlimiv 3175 . . . . . . . . . . . . . . . . . 18 (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}) → ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧))))
8549, 84sylbi 207 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧))))
8685expd 400 . . . . . . . . . . . . . . . 16 (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (𝑤𝑧 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8786com13 88 . . . . . . . . . . . . . . 15 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑤𝑧 → (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8887imp4b 408 . . . . . . . . . . . . . 14 ((∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤𝑧) → ((𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
8988exlimdv 2013 . . . . . . . . . . . . 13 ((∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤𝑧) → (∃𝑣(𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
9044, 89syl5bi 232 . . . . . . . . . . . 12 ((∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤𝑧) → (∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))
9190expimpd 441 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
9291alrimiv 2007 . . . . . . . . . 10 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
93 mo2icl 3537 . . . . . . . . . 10 (∀𝑤((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)) → ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
9492, 93syl 17 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
9543, 94jctird 516 . . . . . . . 8 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → (∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ∧ ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))))
96 df-reu 3068 . . . . . . . . 9 (∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ ∃!𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
97 eu5 2644 . . . . . . . . 9 (∃!𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ↔ (∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ∧ ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
9896, 97bitri 264 . . . . . . . 8 (∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ (∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ∧ ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
9995, 98syl6ibr 242 . . . . . . 7 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
10099expd 400 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑧𝑥 → (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
1012, 100ralrimi 3106 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
102 vex 3354 . . . . . . . . . . 11 𝑓 ∈ V
103102rnex 7247 . . . . . . . . . 10 ran 𝑓 ∈ V
104 p0ex 4984 . . . . . . . . . 10 {∅} ∈ V
105103, 104unex 7103 . . . . . . . . 9 (ran 𝑓 ∪ {∅}) ∈ V
106 vex 3354 . . . . . . . . 9 𝑥 ∈ V
107105, 106unex 7103 . . . . . . . 8 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∈ V
108107pwex 4981 . . . . . . 7 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∈ V
109 ssun1 3927 . . . . . . . . . . . . . 14 (ran 𝑓 ∪ {∅}) ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)
110 fvrn0 6357 . . . . . . . . . . . . . 14 (𝑓𝑢) ∈ (ran 𝑓 ∪ {∅})
111109, 110sselii 3749 . . . . . . . . . . . . 13 (𝑓𝑢) ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)
112 elun2 3932 . . . . . . . . . . . . 13 (𝑢𝑥𝑢 ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
113 prssi 4487 . . . . . . . . . . . . 13 (((𝑓𝑢) ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∧ 𝑢 ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) → {(𝑓𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
114111, 112, 113sylancr 575 . . . . . . . . . . . 12 (𝑢𝑥 → {(𝑓𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
115 prex 5037 . . . . . . . . . . . . 13 {(𝑓𝑢), 𝑢} ∈ V
116115elpw 4303 . . . . . . . . . . . 12 ({(𝑓𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ↔ {(𝑓𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
117114, 116sylibr 224 . . . . . . . . . . 11 (𝑢𝑥 → {(𝑓𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
118 eleq1 2838 . . . . . . . . . . 11 (𝑔 = {(𝑓𝑢), 𝑢} → (𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ↔ {(𝑓𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)))
119117, 118syl5ibrcom 237 . . . . . . . . . 10 (𝑢𝑥 → (𝑔 = {(𝑓𝑢), 𝑢} → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)))
120119adantld 478 . . . . . . . . 9 (𝑢𝑥 → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)))
121120rexlimiv 3175 . . . . . . . 8 (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
122121abssi 3826 . . . . . . 7 {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ⊆ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)
123108, 122ssexi 4937 . . . . . 6 {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∈ V
124 rexeq 3288 . . . . . . . . 9 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (∃𝑣𝑦 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
125124reubidv 3275 . . . . . . . 8 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) ↔ ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
126125imbi2d 329 . . . . . . 7 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → ((𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ↔ (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
127126ralbidv 3135 . . . . . 6 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
128123, 127spcev 3451 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
129101, 128syl 17 . . . 4 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
130129exlimiv 2010 . . 3 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
131130alimi 1887 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
1321, 131sylbi 207 1 (CHOICE → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  ∃!weu 2618  ∃*wmo 2619  {cab 2757  wne 2943  wral 3061  wrex 3062  ∃!wreu 3063  Vcvv 3351  cun 3721  wss 3723  c0 4063  𝒫 cpw 4297  {csn 4316  {cpr 4318  ran crn 5250  cfv 6031  CHOICEwac 9138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-reg 8653
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-eprel 5162  df-fr 5208  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039  df-ac 9139
This theorem is referenced by:  dfac2  9154
  Copyright terms: Public domain W3C validator