![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2𝑜 = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 7731 | . 2 ⊢ 2𝑜 = {∅, 1𝑜} | |
2 | df1o2 7730 | . . 3 ⊢ 1𝑜 = {∅} | |
3 | 2 | preq2i 4409 | . 2 ⊢ {∅, 1𝑜} = {∅, {∅}} |
4 | 1, 3 | eqtri 2793 | 1 ⊢ 2𝑜 = {∅, {∅}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∅c0 4063 {csn 4317 {cpr 4319 1𝑜c1o 7710 2𝑜c2o 7711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-un 3728 df-nul 4064 df-sn 4318 df-pr 4320 df-suc 5871 df-1o 7717 df-2o 7718 |
This theorem is referenced by: 2dom 8186 pw2eng 8226 pwcda1 9222 canthp1lem1 9680 pr0hash2ex 13398 hashpw 13425 znidomb 20125 ssoninhaus 32784 onint1 32785 pw2f1ocnv 38130 df3o3 38849 |
Copyright terms: Public domain | W3C validator |