Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df2ndres Structured version   Visualization version   GIF version

Theorem df2ndres 29822
 Description: Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
df2ndres (2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem df2ndres
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df2nd2 7419 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
21reseq1i 5529 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵))
3 resoprab 6907 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
4 resres 5549 . . . 4 ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵)))
5 incom 3956 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = ((V × V) ∩ (𝐴 × 𝐵))
6 xpss 5266 . . . . . . 7 (𝐴 × 𝐵) ⊆ (V × V)
7 df-ss 3737 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (V × V) ↔ ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵))
86, 7mpbi 220 . . . . . 6 ((𝐴 × 𝐵) ∩ (V × V)) = (𝐴 × 𝐵)
95, 8eqtr3i 2795 . . . . 5 ((V × V) ∩ (𝐴 × 𝐵)) = (𝐴 × 𝐵)
109reseq2i 5530 . . . 4 (2nd ↾ ((V × V) ∩ (𝐴 × 𝐵))) = (2nd ↾ (𝐴 × 𝐵))
114, 10eqtri 2793 . . 3 ((2nd ↾ (V × V)) ↾ (𝐴 × 𝐵)) = (2nd ↾ (𝐴 × 𝐵))
122, 3, 113eqtr3ri 2802 . 2 (2nd ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
13 df-mpt2 6801 . 2 (𝑥𝐴, 𝑦𝐵𝑦) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝑦)}
1412, 13eqtr4i 2796 1 (2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ∩ cin 3722   ⊆ wss 3723   × cxp 5248   ↾ cres 5252  {coprab 6797   ↦ cmpt2 6798  2nd c2nd 7318 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fo 6036  df-fv 6038  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320 This theorem is referenced by:  cnre2csqima  30297
 Copyright terms: Public domain W3C validator