![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2nd2 | Structured version Visualization version GIF version |
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
df2nd2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7335 | . . . . . 6 ⊢ 2nd :V–onto→V | |
2 | fofn 6258 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
4 | dffn5 6383 | . . . . 5 ⊢ (2nd Fn V ↔ 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤))) | |
5 | 3, 4 | mpbi 220 | . . . 4 ⊢ 2nd = (𝑤 ∈ V ↦ (2nd ‘𝑤)) |
6 | mptv 4883 | . . . 4 ⊢ (𝑤 ∈ V ↦ (2nd ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} | |
7 | 5, 6 | eqtri 2792 | . . 3 ⊢ 2nd = {〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} |
8 | 7 | reseq1i 5530 | . 2 ⊢ (2nd ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) |
9 | resopab 5587 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (2nd ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} | |
10 | vex 3352 | . . . . 5 ⊢ 𝑥 ∈ V | |
11 | vex 3352 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 10, 11 | op2ndd 7325 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
13 | 12 | eqeq2d 2780 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (2nd ‘𝑤) ↔ 𝑧 = 𝑦)) |
14 | 13 | dfoprab3 7372 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} |
15 | 8, 9, 14 | 3eqtrri 2797 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 〈cop 4320 {copab 4844 ↦ cmpt 4861 × cxp 5247 ↾ cres 5251 Fn wfn 6026 –onto→wfo 6029 ‘cfv 6031 {coprab 6793 2nd c2nd 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fo 6037 df-fv 6039 df-oprab 6796 df-1st 7314 df-2nd 7315 |
This theorem is referenced by: df2ndres 29816 |
Copyright terms: Public domain | W3C validator |