MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xneg Structured version   Visualization version   GIF version

Definition df-xneg 11906
Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
df-xneg -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))

Detailed syntax breakdown of Definition df-xneg
StepHypRef Expression
1 cA . . 3 class 𝐴
21cxne 11903 . 2 class -𝑒𝐴
3 cpnf 10031 . . . 4 class +∞
41, 3wceq 1480 . . 3 wff 𝐴 = +∞
5 cmnf 10032 . . 3 class -∞
61, 5wceq 1480 . . . 4 wff 𝐴 = -∞
71cneg 10227 . . . 4 class -𝐴
86, 3, 7cif 4064 . . 3 class if(𝐴 = -∞, +∞, -𝐴)
94, 5, 8cif 4064 . 2 class if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
102, 9wceq 1480 1 wff -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  xnegeq  11997  xnegex  11998  xnegpnf  11999  xnegmnf  12000  rexneg  12001
  Copyright terms: Public domain W3C validator