MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wunc Structured version   Visualization version   GIF version

Definition df-wunc 9737
Description: A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-wunc wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
Distinct variable group:   𝑥,𝑢

Detailed syntax breakdown of Definition df-wunc
StepHypRef Expression
1 cwunm 9735 . 2 class wUniCl
2 vx . . 3 setvar 𝑥
3 cvv 3340 . . 3 class V
42cv 1631 . . . . . 6 class 𝑥
5 vu . . . . . . 7 setvar 𝑢
65cv 1631 . . . . . 6 class 𝑢
74, 6wss 3715 . . . . 5 wff 𝑥𝑢
8 cwun 9734 . . . . 5 class WUni
97, 5, 8crab 3054 . . . 4 class {𝑢 ∈ WUni ∣ 𝑥𝑢}
109cint 4627 . . 3 class {𝑢 ∈ WUni ∣ 𝑥𝑢}
112, 3, 10cmpt 4881 . 2 class (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
121, 11wceq 1632 1 wff wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
Colors of variables: wff setvar class
This definition is referenced by:  wuncval  9776
  Copyright terms: Public domain W3C validator