![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-we | Structured version Visualization version GIF version |
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 7138. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-we | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 5216 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 5214 | . . 3 wff 𝑅 Fr 𝐴 |
5 | 1, 2 | wor 5178 | . . 3 wff 𝑅 Or 𝐴 |
6 | 4, 5 | wa 383 | . 2 wff (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) |
7 | 3, 6 | wb 196 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfwe 5234 wess 5245 weeq1 5246 weeq2 5247 wefr 5248 weso 5249 we0 5253 weinxp 5335 wesn 5339 isowe 6754 isowe2 6755 dfwe2 7138 wexp 7451 wofi 8366 dford5reg 31984 fin2so 33701 |
Copyright terms: Public domain | W3C validator |