Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-vd3 Structured version   Visualization version   GIF version

Definition df-vd3 39325
Description: Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-vd3 ((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))

Detailed syntax breakdown of Definition df-vd3
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4wvd3 39322 . 2 wff (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
61, 2, 3w3a 1070 . . 3 wff (𝜑𝜓𝜒)
76, 4wi 4 . 2 wff ((𝜑𝜓𝜒) → 𝜃)
85, 7wb 196 1 wff ((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  dfvd3  39326
  Copyright terms: Public domain W3C validator