Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tsr Structured version   Visualization version   GIF version

Definition df-tsr 17248
 Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.)
Assertion
Ref Expression
df-tsr TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}

Detailed syntax breakdown of Definition df-tsr
StepHypRef Expression
1 ctsr 17246 . 2 class TosetRel
2 vr . . . . . . 7 setvar 𝑟
32cv 1522 . . . . . 6 class 𝑟
43cdm 5143 . . . . 5 class dom 𝑟
54, 4cxp 5141 . . . 4 class (dom 𝑟 × dom 𝑟)
63ccnv 5142 . . . . 5 class 𝑟
73, 6cun 3605 . . . 4 class (𝑟𝑟)
85, 7wss 3607 . . 3 wff (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)
9 cps 17245 . . 3 class PosetRel
108, 2, 9crab 2945 . 2 class {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
111, 10wceq 1523 1 wff TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
 Colors of variables: wff setvar class This definition is referenced by:  istsr  17264
 Copyright terms: Public domain W3C validator