Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-singleton Structured version   Visualization version   GIF version

Definition df-singleton 32306
 Description: Define the singleton function. See brsingle 32361 for its value. (Contributed by Scott Fenton, 4-Apr-2014.)
Assertion
Ref Expression
df-singleton Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))

Detailed syntax breakdown of Definition df-singleton
StepHypRef Expression
1 csingle 32282 . 2 class Singleton
2 cvv 3351 . . . 4 class V
32, 2cxp 5247 . . 3 class (V × V)
4 cep 5161 . . . . . 6 class E
52, 4ctxp 32274 . . . . 5 class (V ⊗ E )
6 cid 5156 . . . . . 6 class I
76, 2ctxp 32274 . . . . 5 class ( I ⊗ V)
85, 7csymdif 3992 . . . 4 class ((V ⊗ E ) △ ( I ⊗ V))
98crn 5250 . . 3 class ran ((V ⊗ E ) △ ( I ⊗ V))
103, 9cdif 3720 . 2 class ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
111, 10wceq 1631 1 wff Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
 Colors of variables: wff setvar class This definition is referenced by:  brsingle  32361  fnsingle  32363
 Copyright terms: Public domain W3C validator