![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s4 | Structured version Visualization version GIF version |
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s4 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | cD | . . 3 class 𝐷 | |
5 | 1, 2, 3, 4 | cs4 13788 | . 2 class 〈“𝐴𝐵𝐶𝐷”〉 |
6 | 1, 2, 3 | cs3 13787 | . . 3 class 〈“𝐴𝐵𝐶”〉 |
7 | 4 | cs1 13480 | . . 3 class 〈“𝐷”〉 |
8 | cconcat 13479 | . . 3 class ++ | |
9 | 6, 7, 8 | co 6813 | . 2 class (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
10 | 5, 9 | wceq 1632 | 1 wff 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: s4eqd 13810 s4cld 13818 s4cli 13827 s4fv0 13840 s4fv1 13841 s4fv2 13842 s4fv3 13843 s4len 13844 s4prop 13855 s1s3 13869 s1s4 13870 s2s2 13874 s4s4 13877 tgcgr4 25625 konigsberglem1 27404 konigsberglem2 27405 konigsberglem3 27406 |
Copyright terms: Public domain | W3C validator |