MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rest Structured version   Visualization version   GIF version

Definition df-rest 16130
Description: Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
df-rest t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
Distinct variable group:   𝑥,𝑗,𝑦

Detailed syntax breakdown of Definition df-rest
StepHypRef Expression
1 crest 16128 . 2 class t
2 vj . . 3 setvar 𝑗
3 vx . . 3 setvar 𝑥
4 cvv 3231 . . 3 class V
5 vy . . . . 5 setvar 𝑦
62cv 1522 . . . . 5 class 𝑗
75cv 1522 . . . . . 6 class 𝑦
83cv 1522 . . . . . 6 class 𝑥
97, 8cin 3606 . . . . 5 class (𝑦𝑥)
105, 6, 9cmpt 4762 . . . 4 class (𝑦𝑗 ↦ (𝑦𝑥))
1110crn 5144 . . 3 class ran (𝑦𝑗 ↦ (𝑦𝑥))
122, 3, 4, 4, 11cmpt2 6692 . 2 class (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
131, 12wceq 1523 1 wff t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  restfn  16132  restval  16134  bj-restsnid  33165
  Copyright terms: Public domain W3C validator