![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 20167 | . 2 class ℝfld | |
2 | ccnfld 19961 | . . 3 class ℂfld | |
3 | cr 10141 | . . 3 class ℝ | |
4 | cress 16065 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 6796 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1631 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 20169 remulg 20170 resubdrg 20171 resubgval 20172 replusg 20173 remulr 20174 re0g 20175 re1r 20176 rele2 20177 relt 20178 reds 20179 redvr 20180 retos 20181 refld 20182 refldcj 20183 regsumsupp 20185 tgioo3 22828 recvs 23165 retopn 23386 recms 23387 reust 23388 rrxcph 23399 reefgim 24424 rzgrp 24521 amgmlem 24937 nn0omnd 30181 nn0archi 30183 xrge0slmod 30184 rezh 30355 rrhcn 30381 rerrext 30393 cnrrext 30394 qqtopn 30395 rrxdsfi 41019 amgmwlem 43076 |
Copyright terms: Public domain | W3C validator |