![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ot | Structured version Visualization version GIF version |
Description: Define ordered triple of classes. Definition of ordered triple in [Stoll] p. 25. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
df-ot | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | cotp 4218 | . 2 class 〈𝐴, 𝐵, 𝐶〉 |
5 | 1, 2 | cop 4216 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cop 4216 | . 2 class 〈〈𝐴, 𝐵〉, 𝐶〉 |
7 | 4, 6 | wceq 1523 | 1 wff 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
Colors of variables: wff setvar class |
This definition is referenced by: oteq1 4442 oteq2 4443 oteq3 4444 otex 4963 otth 4982 otthg 4983 otel3xp 5187 fnotovb 6735 fnotovbOLD 6736 ot1stg 7224 ot2ndg 7225 ot3rdg 7226 el2xptp 7255 el2xptp0 7256 ottpos 7407 wunot 9583 elhomai2 16731 homadmcd 16739 elmpst 31559 mpst123 31563 mpstrcl 31564 mppspstlem 31594 elmpps 31596 hdmap1val 37405 fnotaovb 41599 |
Copyright terms: Public domain | W3C validator |