Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Structured version   Visualization version   GIF version

Definition df-ord 5879
 Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the epsilon relation. Variant of definition of [BellMachover] p. 468. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
df-ord (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3 class 𝐴
21word 5875 . 2 wff Ord 𝐴
31wtr 4896 . . 3 wff Tr 𝐴
4 cep 5170 . . . 4 class E
51, 4wwe 5216 . . 3 wff E We 𝐴
63, 5wa 383 . 2 wff (Tr 𝐴 ∧ E We 𝐴)
72, 6wb 196 1 wff (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
 Colors of variables: wff setvar class This definition is referenced by:  ordeq  5883  ordwe  5889  ordtr  5890  trssord  5893  ordelord  5898  ord0  5930  ordon  7139  dfrecs3  7630  dford2  8682  smobeth  9592  gruina  9824  dford5  31907  dford5reg  31984  dfon2  31994
 Copyright terms: Public domain W3C validator