MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oppg Structured version   Visualization version   GIF version

Definition df-oppg 17972
Description: Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 18819 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
df-oppg oppg = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩))

Detailed syntax breakdown of Definition df-oppg
StepHypRef Expression
1 coppg 17971 . 2 class oppg
2 vw . . 3 setvar 𝑤
3 cvv 3336 . . 3 class V
42cv 1627 . . . 4 class 𝑤
5 cnx 16052 . . . . . 6 class ndx
6 cplusg 16139 . . . . . 6 class +g
75, 6cfv 6045 . . . . 5 class (+g‘ndx)
84, 6cfv 6045 . . . . . 6 class (+g𝑤)
98ctpos 7516 . . . . 5 class tpos (+g𝑤)
107, 9cop 4323 . . . 4 class ⟨(+g‘ndx), tpos (+g𝑤)⟩
11 csts 16053 . . . 4 class sSet
124, 10, 11co 6809 . . 3 class (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩)
132, 3, 12cmpt 4877 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩))
141, 13wceq 1628 1 wff oppg = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oppgval  17973
  Copyright terms: Public domain W3C validator