![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 17355, oduleval 17353,
and oduleg 17354 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 17410. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 17350 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3341 | . . 3 class V | |
4 | 2 | cv 1631 | . . . 4 class 𝑤 |
5 | cnx 16077 | . . . . . 6 class ndx | |
6 | cple 16171 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6050 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6050 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5266 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4328 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 16078 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 6815 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 4882 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1632 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 17352 |
Copyright terms: Public domain | W3C validator |