Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-od Structured version   Visualization version   GIF version

Definition df-od 18148
 Description: Define the order of an element in a group. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by Stefan O'Rear, 4-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Assertion
Ref Expression
df-od od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
Distinct variable group:   𝑔,𝑖,𝑛,𝑥

Detailed syntax breakdown of Definition df-od
StepHypRef Expression
1 cod 18144 . 2 class od
2 vg . . 3 setvar 𝑔
3 cvv 3340 . . 3 class V
4 vx . . . 4 setvar 𝑥
52cv 1631 . . . . 5 class 𝑔
6 cbs 16059 . . . . 5 class Base
75, 6cfv 6049 . . . 4 class (Base‘𝑔)
8 vi . . . . 5 setvar 𝑖
9 vn . . . . . . . . 9 setvar 𝑛
109cv 1631 . . . . . . . 8 class 𝑛
114cv 1631 . . . . . . . 8 class 𝑥
12 cmg 17741 . . . . . . . . 9 class .g
135, 12cfv 6049 . . . . . . . 8 class (.g𝑔)
1410, 11, 13co 6813 . . . . . . 7 class (𝑛(.g𝑔)𝑥)
15 c0g 16302 . . . . . . . 8 class 0g
165, 15cfv 6049 . . . . . . 7 class (0g𝑔)
1714, 16wceq 1632 . . . . . 6 wff (𝑛(.g𝑔)𝑥) = (0g𝑔)
18 cn 11212 . . . . . 6 class
1917, 9, 18crab 3054 . . . . 5 class {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)}
208cv 1631 . . . . . . 7 class 𝑖
21 c0 4058 . . . . . . 7 class
2220, 21wceq 1632 . . . . . 6 wff 𝑖 = ∅
23 cc0 10128 . . . . . 6 class 0
24 cr 10127 . . . . . . 7 class
25 clt 10266 . . . . . . 7 class <
2620, 24, 25cinf 8512 . . . . . 6 class inf(𝑖, ℝ, < )
2722, 23, 26cif 4230 . . . . 5 class if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))
288, 19, 27csb 3674 . . . 4 class {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))
294, 7, 28cmpt 4881 . . 3 class (𝑥 ∈ (Base‘𝑔) ↦ {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
302, 3, 29cmpt 4881 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
311, 30wceq 1632 1 wff od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
 Colors of variables: wff setvar class This definition is referenced by:  odfval  18152
 Copyright terms: Public domain W3C validator