![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ('not-and' or 'nand'). This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1526) and the constant false ⊥ (df-fal 1529), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1564), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1565), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1566), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1567). Contrast with ∧ (df-an 385), ∨ (df-or 384), → (wi 4), and ⊻ (df-xor 1505) . (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1487 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 383 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 196 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1489 nancom 1490 nannan 1491 nannot 1493 nanbi 1494 nanbi1 1495 xornan2 1513 trunanfal 1565 nic-mpALT 1637 nic-ax 1638 nic-axALT 1639 nfnan 1870 nfnanOLD 2274 naim1 32509 naim2 32510 df3nandALT1 32521 imnand2 32524 waj-ax 32538 lukshef-ax2 32539 arg-ax 32540 nandsym1 32546 wl-dfnan2 33426 tsna1 34081 tsna2 34082 tsna3 34083 ifpdfnan 38148 ifpnannanb 38169 nanorxor 38821 undisjrab 38822 |
Copyright terms: Public domain | W3C validator |