MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ltpq Structured version   Visualization version   GIF version

Definition df-ltpq 9717
Description: Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 9927, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-ltpq <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-ltpq
StepHypRef Expression
1 cltpq 9657 . 2 class <pQ
2 vx . . . . . . 7 setvar 𝑥
32cv 1480 . . . . . 6 class 𝑥
4 cnpi 9651 . . . . . . 7 class N
54, 4cxp 5102 . . . . . 6 class (N × N)
63, 5wcel 1988 . . . . 5 wff 𝑥 ∈ (N × N)
7 vy . . . . . . 7 setvar 𝑦
87cv 1480 . . . . . 6 class 𝑦
98, 5wcel 1988 . . . . 5 wff 𝑦 ∈ (N × N)
106, 9wa 384 . . . 4 wff (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))
11 c1st 7151 . . . . . . 7 class 1st
123, 11cfv 5876 . . . . . 6 class (1st𝑥)
13 c2nd 7152 . . . . . . 7 class 2nd
148, 13cfv 5876 . . . . . 6 class (2nd𝑦)
15 cmi 9653 . . . . . 6 class ·N
1612, 14, 15co 6635 . . . . 5 class ((1st𝑥) ·N (2nd𝑦))
178, 11cfv 5876 . . . . . 6 class (1st𝑦)
183, 13cfv 5876 . . . . . 6 class (2nd𝑥)
1917, 18, 15co 6635 . . . . 5 class ((1st𝑦) ·N (2nd𝑥))
20 clti 9654 . . . . 5 class <N
2116, 19, 20wbr 4644 . . . 4 wff ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))
2210, 21wa 384 . . 3 wff ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))
2322, 2, 7copab 4703 . 2 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
241, 23wceq 1481 1 wff <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
Colors of variables: wff setvar class
This definition is referenced by:  ordpipq  9749  lterpq  9777
  Copyright terms: Public domain W3C validator