MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-logb Structured version   Visualization version   GIF version

Definition df-logb 24724
Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017.)
Assertion
Ref Expression
df-logb logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-logb
StepHypRef Expression
1 clogb 24723 . 2 class logb
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 10140 . . . 4 class
5 cc0 10142 . . . . 5 class 0
6 c1 10143 . . . . 5 class 1
75, 6cpr 4319 . . . 4 class {0, 1}
84, 7cdif 3720 . . 3 class (ℂ ∖ {0, 1})
95csn 4317 . . . 4 class {0}
104, 9cdif 3720 . . 3 class (ℂ ∖ {0})
113cv 1630 . . . . 5 class 𝑦
12 clog 24522 . . . . 5 class log
1311, 12cfv 6030 . . . 4 class (log‘𝑦)
142cv 1630 . . . . 5 class 𝑥
1514, 12cfv 6030 . . . 4 class (log‘𝑥)
16 cdiv 10890 . . . 4 class /
1713, 15, 16co 6796 . . 3 class ((log‘𝑦) / (log‘𝑥))
182, 3, 8, 10, 17cmpt2 6798 . 2 class (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
191, 18wceq 1631 1 wff logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  logbval  24725  logbmpt  24747  logbfval  24749
  Copyright terms: Public domain W3C validator