![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-iun | Structured version Visualization version GIF version |
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4698. Theorem uniiun 4717 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 6660 and funiunfv 6661 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciun 4664 | . 2 class ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1623 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2131 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wrex 3043 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2738 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1624 | 1 wff ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliun 4668 iuneq12df 4688 nfiun 4692 nfiu1 4694 dfiunv2 4700 cbviun 4701 iunss 4705 uniiun 4717 iunopab 5154 opeliunxp 5319 reliun 5387 fnasrn 6566 abrexex2g 7301 abrexex2OLD 7307 marypha2lem4 8501 cshwsiun 16000 cbviunf 29671 iuneq12daf 29672 iunrdx 29681 bnj956 31146 bnj1143 31160 bnj1146 31161 bnj1400 31205 bnj882 31295 bnj18eq1 31296 bnj893 31297 bnj1398 31401 volsupnfl 33759 ss2iundf 38445 iunssf 39754 opeliun2xp 42613 nfiund 42923 |
Copyright terms: Public domain | W3C validator |