![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ioc | Structured version Visualization version GIF version |
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ioc | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cioc 12214 | . 2 class (,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10111 | . . 3 class ℝ* | |
5 | 2 | cv 1522 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1522 | . . . . . 6 class 𝑧 |
8 | clt 10112 | . . . . . 6 class < | |
9 | 5, 7, 8 | wbr 4685 | . . . . 5 wff 𝑥 < 𝑧 |
10 | 3 | cv 1522 | . . . . . 6 class 𝑦 |
11 | cle 10113 | . . . . . 6 class ≤ | |
12 | 7, 10, 11 | wbr 4685 | . . . . 5 wff 𝑧 ≤ 𝑦 |
13 | 9, 12 | wa 383 | . . . 4 wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
14 | 13, 6, 4 | crab 2945 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpt2 6692 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
16 | 1, 15 | wceq 1523 | 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iocval 12250 elioc1 12255 iocssxr 12295 iocssicc 12299 iocssioo 12301 snunioc 12338 leordtval2 21064 iocpnfordt 21067 lecldbas 21071 pnfnei 21072 iocmnfcld 22619 xrtgioo 22656 ismbf3d 23466 dvloglem 24439 asindmre 33625 dvasin 33626 ioounsn 38112 ioossioc 40031 snunioo2 40049 eliocre 40052 lbioc 40057 |
Copyright terms: Public domain | W3C validator |