![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version |
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cico 12215 | . 2 class [,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10111 | . . 3 class ℝ* | |
5 | 2 | cv 1522 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1522 | . . . . . 6 class 𝑧 |
8 | cle 10113 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 4685 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1522 | . . . . . 6 class 𝑦 |
11 | clt 10112 | . . . . . 6 class < | |
12 | 7, 10, 11 | wbr 4685 | . . . . 5 wff 𝑧 < 𝑦 |
13 | 9, 12 | wa 383 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
14 | 13, 6, 4 | crab 2945 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpt2 6692 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
16 | 1, 15 | wceq 1523 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: icoval 12251 elico1 12256 elicore 12264 icossico 12281 iccssico 12283 iccssico2 12285 icossxr 12296 icossicc 12298 ioossico 12300 icossioo 12302 icoun 12334 snunioo 12336 snunico 12337 ioojoin 12341 icopnfsup 12704 limsupgord 14247 leordtval2 21064 icomnfordt 21068 lecldbas 21071 mnfnei 21073 icopnfcld 22618 xrtgioo 22656 ioombl 23379 dvfsumrlimge0 23838 dvfsumrlim2 23840 psercnlem2 24223 tanord1 24328 rlimcnp 24737 rlimcnp2 24738 dchrisum0lem2a 25251 pntleml 25345 pnt 25348 joiniooico 29664 icorempt2 33329 icoreresf 33330 isbasisrelowl 33336 icoreelrn 33339 relowlpssretop 33342 asindmre 33625 icof 39725 snunioo1 40056 elicores 40078 dmico 40110 liminfgord 40304 volicorescl 41088 |
Copyright terms: Public domain | W3C validator |