![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-icc | Structured version Visualization version GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 12216 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10111 | . . 3 class ℝ* | |
5 | 2 | cv 1522 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1522 | . . . . . 6 class 𝑧 |
8 | cle 10113 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 4685 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1522 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 4685 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 383 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 2945 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpt2 6692 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1523 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: iccval 12252 elicc1 12257 iccss 12279 iccssioo 12280 iccss2 12282 iccssico 12283 iccssxr 12294 ioossicc 12297 icossicc 12298 iocssicc 12299 iccf 12310 snunioo 12336 snunico 12337 snunioc 12338 ioodisj 12340 leordtval2 21064 iccordt 21066 lecldbas 21071 ioombl 23379 itgspliticc 23648 psercnlem2 24223 tanord1 24328 cvmliftlem10 31402 ftc1anclem7 33621 ftc1anclem8 33622 ftc1anc 33623 ioounsn 38112 snunioo2 40049 snunioo1 40056 |
Copyright terms: Public domain | W3C validator |