MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 16013
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 15999 . 2 class Hom
2 c1 9975 . . . 4 class 1
3 c4 11110 . . . 4 class 4
42, 3cdc 11531 . . 3 class 14
54cslot 15903 . 2 class Slot 14
61, 5wceq 1523 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  16121  homid  16122  resshom  16125  prdsval  16162  oppchomfval  16421  wunfunc  16606  wunnat  16663  fuchom  16668  catcoppccl  16805  catcfuccl  16806  catcxpccl  16894
  Copyright terms: Public domain W3C validator