![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version GIF version |
Description: Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 27984). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as theorem hhba 28152. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hba | ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chil 27904 | . 2 class ℋ | |
2 | cva 27905 | . . . . 5 class +ℎ | |
3 | csm 27906 | . . . . 5 class ·ℎ | |
4 | 2, 3 | cop 4216 | . . . 4 class 〈 +ℎ , ·ℎ 〉 |
5 | cno 27908 | . . . 4 class normℎ | |
6 | 4, 5 | cop 4216 | . . 3 class 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
7 | cba 27569 | . . 3 class BaseSet | |
8 | 6, 7 | cfv 5926 | . 2 class (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
9 | 1, 8 | wceq 1523 | 1 wff ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 27966 axhfvadd-zf 27967 axhvcom-zf 27968 axhvass-zf 27969 axhv0cl-zf 27970 axhvaddid-zf 27971 axhfvmul-zf 27972 axhvmulid-zf 27973 axhvmulass-zf 27974 axhvdistr1-zf 27975 axhvdistr2-zf 27976 axhvmul0-zf 27977 axhfi-zf 27978 axhis1-zf 27979 axhis2-zf 27980 axhis3-zf 27981 axhis4-zf 27982 axhcompl-zf 27983 bcsiHIL 28165 hlimadd 28178 hhssabloilem 28246 pjhthlem2 28379 nmopsetretHIL 28851 nmopub2tHIL 28897 hmopbdoptHIL 28975 |
Copyright terms: Public domain | W3C validator |