![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fil | Structured version Visualization version GIF version |
Description: The set of filters on a set. Definition 1 (axioms FI, FIIa, FIIb, FIII) of [BourbakiTop1] p. I.36. Filters are used to define the concept of limit in the general case. They are a generalization of the idea of neighborhoods. Suppose you are in ℝ. With neighborhoods you can express the idea of a variable that tends to a specific number but you can't express the idea of a variable that tends to infinity. Filters relax the "axioms" of neighborhoods and then succeed in expressing the idea of something that tends to infinity. Filters were invented by Cartan in 1937 and made famous by Bourbaki in his treatise. A notion similar to the notion of filter is the concept of net invented by Moore and Smith in 1922. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
df-fil | ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfil 21696 | . 2 class Fil | |
2 | vz | . . 3 setvar 𝑧 | |
3 | cvv 3231 | . . 3 class V | |
4 | vf | . . . . . . . . 9 setvar 𝑓 | |
5 | 4 | cv 1522 | . . . . . . . 8 class 𝑓 |
6 | vx | . . . . . . . . . 10 setvar 𝑥 | |
7 | 6 | cv 1522 | . . . . . . . . 9 class 𝑥 |
8 | 7 | cpw 4191 | . . . . . . . 8 class 𝒫 𝑥 |
9 | 5, 8 | cin 3606 | . . . . . . 7 class (𝑓 ∩ 𝒫 𝑥) |
10 | c0 3948 | . . . . . . 7 class ∅ | |
11 | 9, 10 | wne 2823 | . . . . . 6 wff (𝑓 ∩ 𝒫 𝑥) ≠ ∅ |
12 | 6, 4 | wel 2031 | . . . . . 6 wff 𝑥 ∈ 𝑓 |
13 | 11, 12 | wi 4 | . . . . 5 wff ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) |
14 | 2 | cv 1522 | . . . . . 6 class 𝑧 |
15 | 14 | cpw 4191 | . . . . 5 class 𝒫 𝑧 |
16 | 13, 6, 15 | wral 2941 | . . . 4 wff ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) |
17 | cfbas 19782 | . . . . 5 class fBas | |
18 | 14, 17 | cfv 5926 | . . . 4 class (fBas‘𝑧) |
19 | 16, 4, 18 | crab 2945 | . . 3 class {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)} |
20 | 2, 3, 19 | cmpt 4762 | . 2 class (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
21 | 1, 20 | wceq 1523 | 1 wff Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
Colors of variables: wff setvar class |
This definition is referenced by: isfil 21698 filunirn 21733 |
Copyright terms: Public domain | W3C validator |