MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-c Structured version   Visualization version   GIF version

Definition df-c 9980
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 10007. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-c ℂ = (R × R)

Detailed syntax breakdown of Definition df-c
StepHypRef Expression
1 cc 9972 . 2 class
2 cnr 9725 . . 3 class R
32, 2cxp 5141 . 2 class (R × R)
41, 3wceq 1523 1 wff ℂ = (R × R)
Colors of variables: wff setvar class
This definition is referenced by:  opelcn  9988  0ncn  9992  addcnsr  9994  mulcnsr  9995  dfcnqs  10001  axaddf  10004  axmulf  10005  axcnex  10006  axresscn  10007  axcnre  10023  wuncn  10029
  Copyright terms: Public domain W3C validator