MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-arw Structured version   Visualization version   GIF version

Definition df-arw 16724
Description: Definition of the set of arrows of a category. We will use the term "arrow" to denote a morphism tagged with its domain and codomain, as opposed to Hom, which allows hom-sets for distinct objects to overlap. (Contributed by Mario Carneiro, 11-Jan-2017.)
Assertion
Ref Expression
df-arw Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))

Detailed syntax breakdown of Definition df-arw
StepHypRef Expression
1 carw 16719 . 2 class Arrow
2 vc . . 3 setvar 𝑐
3 ccat 16372 . . 3 class Cat
42cv 1522 . . . . . 6 class 𝑐
5 choma 16720 . . . . . 6 class Homa
64, 5cfv 5926 . . . . 5 class (Homa𝑐)
76crn 5144 . . . 4 class ran (Homa𝑐)
87cuni 4468 . . 3 class ran (Homa𝑐)
92, 3, 8cmpt 4762 . 2 class (𝑐 ∈ Cat ↦ ran (Homa𝑐))
101, 9wceq 1523 1 wff Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
Colors of variables: wff setvar class
This definition is referenced by:  arwval  16740  arwrcl  16741
  Copyright terms: Public domain W3C validator