![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-aov | Structured version Visualization version GIF version |
Description: Define the value of an operation. In contrast to df-ov 6768, the alternative definition for a function value (see df-afv 41620) is used. By this, the value of the operation applied to two arguments is the universal class if the operation is not defined for these two arguments. There are still no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
df-aov | ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | caov 41618 | . 2 class ((𝐴𝐹𝐵)) |
5 | 1, 2 | cop 4291 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cafv 41617 | . 2 class (𝐹'''〈𝐴, 𝐵〉) |
7 | 4, 6 | wceq 1596 | 1 wff ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) |
Colors of variables: wff setvar class |
This definition is referenced by: aoveq123d 41681 nfaov 41682 aovfundmoveq 41684 aovnfundmuv 41685 ndmaov 41686 aovvdm 41688 nfunsnaov 41689 aovvfunressn 41690 aovprc 41691 aovrcl 41692 aovpcov0 41693 aovnuoveq 41694 aovvoveq 41695 aov0ov0 41696 aovovn0oveq 41697 aov0nbovbi 41698 aovov0bi 41699 fnotaovb 41701 ffnaov 41702 aoprssdm 41705 |
Copyright terms: Public domain | W3C validator |