![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-7 | Structured version Visualization version GIF version |
Description: Define the number 7. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-7 | ⊢ 7 = (6 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c7 11113 | . 2 class 7 | |
2 | c6 11112 | . . 3 class 6 | |
3 | c1 9975 | . . 3 class 1 | |
4 | caddc 9977 | . . 3 class + | |
5 | 2, 3, 4 | co 6690 | . 2 class (6 + 1) |
6 | 1, 5 | wceq 1523 | 1 wff 7 = (6 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 7re 11141 7pos 11158 7m1e6 11179 6p1e7 11194 4p3e7 11201 5p2e7 11203 6p2e8 11207 7nn 11228 6lt7 11247 7p7e14 11647 8p7e15 11655 9p7e16 11663 9p8e17 11664 7t7e49 11691 8t7e56 11699 9t7e63 11706 7prm 15864 17prm 15871 37prm 15875 317prm 15880 log2ublem2 24719 log2ublem3 24720 bclbnd 25050 bposlem8 25061 lgsdir2lem3 25097 2lgslem3d 25169 problem4 31688 rmydioph 37898 expdiophlem2 37906 fmtno5 41794 257prm 41798 2exp7 41839 127prm 41840 7odd 41946 stgoldbwt 41989 |
Copyright terms: Public domain | W3C validator |