![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-3o | Structured version Visualization version GIF version |
Description: Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
Ref | Expression |
---|---|
df-3o | ⊢ 3𝑜 = suc 2𝑜 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c3o 7716 | . 2 class 3𝑜 | |
2 | c2o 7715 | . . 3 class 2𝑜 | |
3 | 2 | csuc 5878 | . 2 class suc 2𝑜 |
4 | 1, 3 | wceq 1624 | 1 wff 3𝑜 = suc 2𝑜 |
Colors of variables: wff setvar class |
This definition is referenced by: 3on 7731 o2p2e4 7782 3onn 7882 en3 8354 hash3 13378 finxp3o 33540 df3o2 38816 df3o3 38817 clsk1independent 38838 |
Copyright terms: Public domain | W3C validator |