MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-0 Structured version   Visualization version   GIF version

Definition df-0 9928
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-0 0 = ⟨0R, 0R

Detailed syntax breakdown of Definition df-0
StepHypRef Expression
1 cc0 9921 . 2 class 0
2 c0r 9673 . . 3 class 0R
32, 2cop 4174 . 2 class ⟨0R, 0R
41, 3wceq 1481 1 wff 0 = ⟨0R, 0R
Colors of variables: wff setvar class
This definition is referenced by:  axi2m1  9965  ax1ne0  9966  axrnegex  9968  axrrecex  9969  axpre-mulgt0  9974
  Copyright terms: Public domain W3C validator