Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangsn Structured version   Visualization version   GIF version

Theorem derangsn 31459
 Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangsn (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝑉
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦)

Proof of Theorem derangsn
StepHypRef Expression
1 snfi 8203 . . . 4 {𝐴} ∈ Fin
2 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
32derangval 31456 . . . 4 ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}))
41, 3ax-mp 5 . . 3 (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)})
5 f1of 6298 . . . . . . . . . 10 (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴})
65adantr 472 . . . . . . . . 9 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴})
7 snidg 4351 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
8 ffvelrn 6520 . . . . . . . . 9 ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ {𝐴})
96, 7, 8syl2anr 496 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ∈ {𝐴})
10 simpr 479 . . . . . . . . . 10 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)
11 fveq2 6352 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑓𝑦) = (𝑓𝐴))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2993 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑓𝐴) ≠ 𝐴))
1413rspcva 3447 . . . . . . . . . 10 ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → (𝑓𝐴) ≠ 𝐴)
157, 10, 14syl2an 495 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ≠ 𝐴)
16 nelsn 4357 . . . . . . . . 9 ((𝑓𝐴) ≠ 𝐴 → ¬ (𝑓𝐴) ∈ {𝐴})
1715, 16syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → ¬ (𝑓𝐴) ∈ {𝐴})
189, 17pm2.21dd 186 . . . . . . 7 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅)
1918ex 449 . . . . . 6 (𝐴𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓 ∈ ∅))
2019abssdv 3817 . . . . 5 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅)
21 ss0 4117 . . . . 5 ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2220, 21syl 17 . . . 4 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2322fveq2d 6356 . . 3 (𝐴𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}) = (♯‘∅))
244, 23syl5eq 2806 . 2 (𝐴𝑉 → (𝐷‘{𝐴}) = (♯‘∅))
25 hash0 13350 . 2 (♯‘∅) = 0
2624, 25syl6eq 2810 1 (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746   ≠ wne 2932  ∀wral 3050   ⊆ wss 3715  ∅c0 4058  {csn 4321   ↦ cmpt 4881  ⟶wf 6045  –1-1-onto→wf1o 6048  ‘cfv 6049  Fincfn 8121  0cc0 10128  ♯chash 13311 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-hash 13312 This theorem is referenced by:  subfac1  31467
 Copyright terms: Public domain W3C validator