Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangen Structured version   Visualization version   GIF version

Theorem derangen 31482
 Description: The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangen ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) = (𝐷𝐵))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)

Proof of Theorem derangen
StepHypRef Expression
1 derang.d . . 3 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
21derangenlem 31481 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) ≤ (𝐷𝐵))
3 ensym 8172 . . . 4 (𝐴𝐵𝐵𝐴)
43adantr 472 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → 𝐵𝐴)
5 enfi 8343 . . . 4 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
65biimpar 503 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
71derangenlem 31481 . . 3 ((𝐵𝐴𝐴 ∈ Fin) → (𝐷𝐵) ≤ (𝐷𝐴))
84, 6, 7syl2anc 696 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐵) ≤ (𝐷𝐴))
91derangf 31478 . . . . 5 𝐷:Fin⟶ℕ0
109ffvelrni 6522 . . . 4 (𝐴 ∈ Fin → (𝐷𝐴) ∈ ℕ0)
116, 10syl 17 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) ∈ ℕ0)
129ffvelrni 6522 . . . 4 (𝐵 ∈ Fin → (𝐷𝐵) ∈ ℕ0)
1312adantl 473 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐵) ∈ ℕ0)
14 nn0re 11513 . . . 4 ((𝐷𝐴) ∈ ℕ0 → (𝐷𝐴) ∈ ℝ)
15 nn0re 11513 . . . 4 ((𝐷𝐵) ∈ ℕ0 → (𝐷𝐵) ∈ ℝ)
16 letri3 10335 . . . 4 (((𝐷𝐴) ∈ ℝ ∧ (𝐷𝐵) ∈ ℝ) → ((𝐷𝐴) = (𝐷𝐵) ↔ ((𝐷𝐴) ≤ (𝐷𝐵) ∧ (𝐷𝐵) ≤ (𝐷𝐴))))
1714, 15, 16syl2an 495 . . 3 (((𝐷𝐴) ∈ ℕ0 ∧ (𝐷𝐵) ∈ ℕ0) → ((𝐷𝐴) = (𝐷𝐵) ↔ ((𝐷𝐴) ≤ (𝐷𝐵) ∧ (𝐷𝐵) ≤ (𝐷𝐴))))
1811, 13, 17syl2anc 696 . 2 ((𝐴𝐵𝐵 ∈ Fin) → ((𝐷𝐴) = (𝐷𝐵) ↔ ((𝐷𝐴) ≤ (𝐷𝐵) ∧ (𝐷𝐵) ≤ (𝐷𝐴))))
192, 8, 18mpbir2and 995 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) = (𝐷𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746   ≠ wne 2932  ∀wral 3050   class class class wbr 4804   ↦ cmpt 4881  –1-1-onto→wf1o 6048  ‘cfv 6049   ≈ cen 8120  Fincfn 8123  ℝcr 10147   ≤ cle 10287  ℕ0cn0 11504  ♯chash 13331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332 This theorem is referenced by:  derangen2  31484
 Copyright terms: Public domain W3C validator