![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > degltlem1 | Structured version Visualization version GIF version |
Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
degltlem1 | ⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3902 | . 2 ⊢ (𝑋 ∈ (ℕ0 ∪ {-∞}) ↔ (𝑋 ∈ ℕ0 ∨ 𝑋 ∈ {-∞})) | |
2 | nn0z 11601 | . . . 4 ⊢ (𝑋 ∈ ℕ0 → 𝑋 ∈ ℤ) | |
3 | zltlem1 11631 | . . . 4 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) | |
4 | 2, 3 | sylan 561 | . . 3 ⊢ ((𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) |
5 | zre 11582 | . . . . . . 7 ⊢ (𝑌 ∈ ℤ → 𝑌 ∈ ℝ) | |
6 | mnflt 12161 | . . . . . . 7 ⊢ (𝑌 ∈ ℝ → -∞ < 𝑌) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → -∞ < 𝑌) |
8 | peano2zm 11621 | . . . . . . . . 9 ⊢ (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℤ) | |
9 | 8 | zred 11683 | . . . . . . . 8 ⊢ (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ) |
10 | 9 | rexrd 10290 | . . . . . . 7 ⊢ (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ*) |
11 | mnfle 12173 | . . . . . . 7 ⊢ ((𝑌 − 1) ∈ ℝ* → -∞ ≤ (𝑌 − 1)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ ℤ → -∞ ≤ (𝑌 − 1)) |
13 | 7, 12 | 2thd 255 | . . . . 5 ⊢ (𝑌 ∈ ℤ → (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))) |
14 | elsni 4331 | . . . . . 6 ⊢ (𝑋 ∈ {-∞} → 𝑋 = -∞) | |
15 | breq1 4787 | . . . . . . 7 ⊢ (𝑋 = -∞ → (𝑋 < 𝑌 ↔ -∞ < 𝑌)) | |
16 | breq1 4787 | . . . . . . 7 ⊢ (𝑋 = -∞ → (𝑋 ≤ (𝑌 − 1) ↔ -∞ ≤ (𝑌 − 1))) | |
17 | 15, 16 | bibi12d 334 | . . . . . 6 ⊢ (𝑋 = -∞ → ((𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1)))) |
18 | 14, 17 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {-∞} → ((𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1)))) |
19 | 13, 18 | syl5ibrcom 237 | . . . 4 ⊢ (𝑌 ∈ ℤ → (𝑋 ∈ {-∞} → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1)))) |
20 | 19 | impcom 394 | . . 3 ⊢ ((𝑋 ∈ {-∞} ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) |
21 | 4, 20 | jaoian 937 | . 2 ⊢ (((𝑋 ∈ ℕ0 ∨ 𝑋 ∈ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) |
22 | 1, 21 | sylanb 562 | 1 ⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 ∪ cun 3719 {csn 4314 class class class wbr 4784 (class class class)co 6792 ℝcr 10136 1c1 10138 -∞cmnf 10273 ℝ*cxr 10274 < clt 10275 ≤ cle 10276 − cmin 10467 ℕ0cn0 11493 ℤcz 11578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 |
This theorem is referenced by: degltp1le 24052 ply1divex 24115 |
Copyright terms: Public domain | W3C validator |