MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1z Structured version   Visualization version   GIF version

Theorem deg1z 24088
Description: Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
Assertion
Ref Expression
deg1z (𝑅 ∈ Ring → (𝐷0 ) = -∞)

Proof of Theorem deg1z
StepHypRef Expression
1 1on 7741 . 2 1𝑜 ∈ On
2 deg1z.d . . . 4 𝐷 = ( deg1𝑅)
32deg1fval 24081 . . 3 𝐷 = (1𝑜 mDeg 𝑅)
4 eqid 2774 . . 3 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
5 deg1z.p . . . 4 𝑃 = (Poly1𝑅)
6 deg1z.z . . . 4 0 = (0g𝑃)
74, 5, 6ply1mpl0 19860 . . 3 0 = (0g‘(1𝑜 mPoly 𝑅))
83, 4, 7mdeg0 24071 . 2 ((1𝑜 ∈ On ∧ 𝑅 ∈ Ring) → (𝐷0 ) = -∞)
91, 8mpan 671 1 (𝑅 ∈ Ring → (𝐷0 ) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1634  wcel 2148  Oncon0 5877  cfv 6042  (class class class)co 6812  1𝑜c1o 7727  -∞cmnf 10295  0gc0g 16328  Ringcrg 18775   mPoly cmpl 19588  Poly1cpl1 19782   deg1 cdg1 24055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-of 7065  df-om 7234  df-1st 7336  df-2nd 7337  df-supp 7468  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-fsupp 8453  df-sup 8525  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-7 11307  df-8 11308  df-9 11309  df-n0 11517  df-z 11602  df-dec 11718  df-uz 11911  df-fz 12556  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-sca 16185  df-vsca 16186  df-tset 16188  df-ple 16189  df-0g 16330  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-grp 17653  df-minusg 17654  df-subg 17819  df-ring 18777  df-psr 19591  df-mpl 19593  df-opsr 19595  df-psr1 19785  df-ply1 19787  df-mdeg 24056  df-deg1 24057
This theorem is referenced by:  deg1nn0clb  24091  deg1lt0  24092  deg1add  24104  ply1divex  24137  dvdsq1p  24161  hbtlem2  38235
  Copyright terms: Public domain W3C validator