![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1val | Structured version Visualization version GIF version |
Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1val | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | 1 | deg1fval 23885 | . . 3 ⊢ 𝐷 = (1𝑜 mDeg 𝑅) |
3 | eqid 2651 | . . 3 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2651 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 4, 5, 6 | ply1bas 19613 | . . 3 ⊢ 𝐵 = (Base‘(1𝑜 mPoly 𝑅)) |
8 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | psr1baslem 19603 | . . 3 ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑦 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑦 “ ℕ) ∈ Fin} | |
10 | tdeglem2 23866 | . . 3 ⊢ (𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (ℂfld Σg 𝑥)) | |
11 | 2, 3, 7, 8, 9, 10 | mdegval 23868 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < )) |
12 | fvex 6239 | . . . . . . . . 9 ⊢ (0g‘𝑅) ∈ V | |
13 | 8, 12 | eqeltri 2726 | . . . . . . . 8 ⊢ 0 ∈ V |
14 | suppimacnv 7351 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 0 ∈ V) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | |
15 | 13, 14 | mpan2 707 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
16 | 15 | imaeq2d 5501 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 })))) |
17 | imaco 5678 | . . . . . 6 ⊢ (((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 }))) | |
18 | 16, 17 | syl6eqr 2703 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 }))) |
19 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
20 | df1o2 7617 | . . . . . . . . . 10 ⊢ 1𝑜 = {∅} | |
21 | nn0ex 11336 | . . . . . . . . . 10 ⊢ ℕ0 ∈ V | |
22 | 0ex 4823 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
23 | eqid 2651 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) | |
24 | 20, 21, 22, 23 | mapsncnv 7946 | . . . . . . . . 9 ⊢ ◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1𝑜 × {𝑦})) |
25 | 19, 6, 4, 24 | coe1fval2 19628 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)))) |
26 | 25 | cnveqd 5330 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → ◡𝐴 = ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)))) |
27 | cnvco 5340 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅))) = (◡◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
28 | cocnvcnv1 5684 | . . . . . . . 8 ⊢ (◡◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
29 | 27, 28 | eqtri 2673 | . . . . . . 7 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) |
30 | 26, 29 | syl6req 2702 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ◡𝐴) |
31 | 30 | imaeq1d 5500 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = (◡𝐴 “ (V ∖ { 0 }))) |
32 | 18, 31 | eqtrd 2685 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (◡𝐴 “ (V ∖ { 0 }))) |
33 | fvex 6239 | . . . . . 6 ⊢ (coe1‘𝐹) ∈ V | |
34 | 19, 33 | eqeltri 2726 | . . . . 5 ⊢ 𝐴 ∈ V |
35 | suppimacnv 7351 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (◡𝐴 “ (V ∖ { 0 }))) | |
36 | 35 | eqcomd 2657 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )) |
37 | 34, 13, 36 | mp2an 708 | . . . 4 ⊢ (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ) |
38 | 32, 37 | syl6eq 2701 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 )) |
39 | 38 | supeq1d 8393 | . 2 ⊢ (𝐹 ∈ 𝐵 → sup(((𝑥 ∈ (ℕ0 ↑𝑚 1𝑜) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < )) |
40 | 11, 39 | eqtrd 2685 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ∅c0 3948 {csn 4210 ↦ cmpt 4762 ◡ccnv 5142 “ cima 5146 ∘ ccom 5147 ‘cfv 5926 (class class class)co 6690 supp csupp 7340 1𝑜c1o 7598 ↑𝑚 cmap 7899 supcsup 8387 ℝ*cxr 10111 < clt 10112 ℕ0cn0 11330 Basecbs 15904 0gc0g 16147 mPoly cmpl 19401 PwSer1cps1 19593 Poly1cpl1 19595 coe1cco1 19596 deg1 cdg1 23859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-0g 16149 df-gsum 16150 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-mgp 18536 df-ring 18595 df-cring 18596 df-psr 19404 df-mpl 19406 df-opsr 19408 df-psr1 19598 df-ply1 19600 df-coe1 19601 df-cnfld 19795 df-mdeg 23860 df-deg1 23861 |
This theorem is referenced by: deg1mul3 23920 deg1mul3le 23921 |
Copyright terms: Public domain | W3C validator |