![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1tmle | Structured version Visualization version GIF version |
Description: Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
deg1tm.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
deg1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
deg1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
deg1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
deg1tm.e | ⊢ ↑ = (.g‘𝑁) |
Ref | Expression |
---|---|
deg1tmle | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
2 | deg1tm.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | deg1tm.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | deg1tm.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
5 | deg1tm.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑃) | |
6 | deg1tm.n | . . . . 5 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | deg1tm.e | . . . . 5 ⊢ ↑ = (.g‘𝑁) | |
8 | simpl1 1228 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝑅 ∈ Ring) | |
9 | simpl2 1230 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐶 ∈ 𝐾) | |
10 | simpl3 1232 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 ∈ ℕ0) | |
11 | simprl 811 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝑥 ∈ ℕ0) | |
12 | 10 | nn0red 11564 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 ∈ ℝ) |
13 | simprr 813 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 < 𝑥) | |
14 | 12, 13 | ltned 10385 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → 𝐹 ≠ 𝑥) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14 | coe1tmfv2 19867 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ (𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥)) → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅)) |
16 | 15 | expr 644 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅))) |
17 | 16 | ralrimiva 3104 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → ∀𝑥 ∈ ℕ0 (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅))) |
18 | eqid 2760 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
19 | 2, 3, 4, 5, 6, 7, 18 | ply1tmcl 19864 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃)) |
20 | nn0re 11513 | . . . . 5 ⊢ (𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ) | |
21 | 20 | rexrd 10301 | . . . 4 ⊢ (𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ*) |
22 | 21 | 3ad2ant3 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℝ*) |
23 | deg1tm.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
24 | eqid 2760 | . . . 4 ⊢ (coe1‘(𝐶 · (𝐹 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐹 ↑ 𝑋))) | |
25 | 23, 3, 18, 1, 24 | deg1leb 24074 | . . 3 ⊢ (((𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃) ∧ 𝐹 ∈ ℝ*) → ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹 ↔ ∀𝑥 ∈ ℕ0 (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅)))) |
26 | 19, 22, 25 | syl2anc 696 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹 ↔ ∀𝑥 ∈ ℕ0 (𝐹 < 𝑥 → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝑥) = (0g‘𝑅)))) |
27 | 17, 26 | mpbird 247 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 ℕ0cn0 11504 Basecbs 16079 ·𝑠 cvsca 16167 0gc0g 16322 .gcmg 17761 mulGrpcmgp 18709 Ringcrg 18767 var1cv1 19768 Poly1cpl1 19769 coe1cco1 19770 deg1 cdg1 24033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-ofr 7064 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-sup 8515 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-fzo 12680 df-seq 13016 df-hash 13332 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-0g 16324 df-gsum 16325 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-ghm 17879 df-cntz 17970 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-cring 18770 df-subrg 19000 df-lmod 19087 df-lss 19155 df-psr 19578 df-mvr 19579 df-mpl 19580 df-opsr 19582 df-psr1 19772 df-vr1 19773 df-ply1 19774 df-coe1 19775 df-cnfld 19969 df-mdeg 24034 df-deg1 24035 |
This theorem is referenced by: deg1tm 24097 deg1pwle 24098 ply1divex 24115 |
Copyright terms: Public domain | W3C validator |