![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1submon1p | Structured version Visualization version GIF version |
Description: The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1submon1p.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1submon1p.o | ⊢ 𝑂 = (Monic1p‘𝑅) |
deg1submon1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1submon1p.m | ⊢ − = (-g‘𝑃) |
deg1submon1p.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1submon1p.f1 | ⊢ (𝜑 → 𝐹 ∈ 𝑂) |
deg1submon1p.f2 | ⊢ (𝜑 → (𝐷‘𝐹) = 𝑋) |
deg1submon1p.g1 | ⊢ (𝜑 → 𝐺 ∈ 𝑂) |
deg1submon1p.g2 | ⊢ (𝜑 → (𝐷‘𝐺) = 𝑋) |
Ref | Expression |
---|---|
deg1submon1p | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1submon1p.d | . 2 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1submon1p.p | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | eqid 2770 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | deg1submon1p.m | . 2 ⊢ − = (-g‘𝑃) | |
5 | deg1submon1p.f2 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) = 𝑋) | |
6 | deg1submon1p.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | deg1submon1p.f1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑂) | |
8 | deg1submon1p.o | . . . . . 6 ⊢ 𝑂 = (Monic1p‘𝑅) | |
9 | 2, 3, 8 | mon1pcl 24123 | . . . . 5 ⊢ (𝐹 ∈ 𝑂 → 𝐹 ∈ (Base‘𝑃)) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
11 | eqid 2770 | . . . . . 6 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
12 | 2, 11, 8 | mon1pn0 24125 | . . . . 5 ⊢ (𝐹 ∈ 𝑂 → 𝐹 ≠ (0g‘𝑃)) |
13 | 7, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ (0g‘𝑃)) |
14 | 1, 2, 11, 3 | deg1nn0cl 24067 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g‘𝑃)) → (𝐷‘𝐹) ∈ ℕ0) |
15 | 6, 10, 13, 14 | syl3anc 1475 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
16 | 5, 15 | eqeltrrd 2850 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
17 | 16 | nn0red 11553 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
18 | 17 | leidd 10795 | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑋) |
19 | 5, 18 | eqbrtrd 4806 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝑋) |
20 | deg1submon1p.g1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑂) | |
21 | 2, 3, 8 | mon1pcl 24123 | . . 3 ⊢ (𝐺 ∈ 𝑂 → 𝐺 ∈ (Base‘𝑃)) |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Base‘𝑃)) |
23 | deg1submon1p.g2 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) = 𝑋) | |
24 | 23, 18 | eqbrtrd 4806 | . 2 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝑋) |
25 | eqid 2770 | . 2 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
26 | eqid 2770 | . 2 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
27 | 5 | fveq2d 6336 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = ((coe1‘𝐹)‘𝑋)) |
28 | eqid 2770 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
29 | 1, 28, 8 | mon1pldg 24128 | . . . . 5 ⊢ (𝐹 ∈ 𝑂 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = (1r‘𝑅)) |
30 | 7, 29 | syl 17 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = (1r‘𝑅)) |
31 | 27, 30 | eqtr3d 2806 | . . 3 ⊢ (𝜑 → ((coe1‘𝐹)‘𝑋) = (1r‘𝑅)) |
32 | 1, 28, 8 | mon1pldg 24128 | . . . 4 ⊢ (𝐺 ∈ 𝑂 → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (1r‘𝑅)) |
33 | 20, 32 | syl 17 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (1r‘𝑅)) |
34 | 23 | fveq2d 6336 | . . 3 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) = ((coe1‘𝐺)‘𝑋)) |
35 | 31, 33, 34 | 3eqtr2d 2810 | . 2 ⊢ (𝜑 → ((coe1‘𝐹)‘𝑋) = ((coe1‘𝐺)‘𝑋)) |
36 | 1, 2, 3, 4, 16, 6, 10, 19, 22, 24, 25, 26, 35 | deg1sublt 24089 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 < clt 10275 ≤ cle 10276 ℕ0cn0 11493 Basecbs 16063 0gc0g 16307 -gcsg 17631 1rcur 18708 Ringcrg 18754 Poly1cpl1 19761 coe1cco1 19762 deg1 cdg1 24033 Monic1pcmn1 24104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-ofr 7044 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-0g 16309 df-gsum 16310 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-ghm 17865 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-subrg 18987 df-lmod 19074 df-lss 19142 df-rlreg 19497 df-psr 19570 df-mpl 19572 df-opsr 19574 df-psr1 19764 df-ply1 19766 df-coe1 19767 df-cnfld 19961 df-mdeg 24034 df-deg1 24035 df-mon1 24109 |
This theorem is referenced by: ig1peu 24150 |
Copyright terms: Public domain | W3C validator |