MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1suble Structured version   Visualization version   GIF version

Theorem deg1suble 24086
Description: The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = ( deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1suble.b 𝐵 = (Base‘𝑌)
deg1suble.m = (-g𝑌)
deg1suble.f (𝜑𝐹𝐵)
deg1suble.g (𝜑𝐺𝐵)
Assertion
Ref Expression
deg1suble (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))

Proof of Theorem deg1suble
StepHypRef Expression
1 deg1addle.y . . 3 𝑌 = (Poly1𝑅)
2 deg1addle.d . . 3 𝐷 = ( deg1𝑅)
3 deg1addle.r . . 3 (𝜑𝑅 ∈ Ring)
4 deg1suble.b . . 3 𝐵 = (Base‘𝑌)
5 eqid 2770 . . 3 (+g𝑌) = (+g𝑌)
6 deg1suble.f . . 3 (𝜑𝐹𝐵)
71ply1ring 19832 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
8 ringgrp 18759 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
93, 7, 83syl 18 . . . 4 (𝜑𝑌 ∈ Grp)
10 deg1suble.g . . . 4 (𝜑𝐺𝐵)
11 eqid 2770 . . . . 5 (invg𝑌) = (invg𝑌)
124, 11grpinvcl 17674 . . . 4 ((𝑌 ∈ Grp ∧ 𝐺𝐵) → ((invg𝑌)‘𝐺) ∈ 𝐵)
139, 10, 12syl2anc 565 . . 3 (𝜑 → ((invg𝑌)‘𝐺) ∈ 𝐵)
141, 2, 3, 4, 5, 6, 13deg1addle 24080 . 2 (𝜑 → (𝐷‘(𝐹(+g𝑌)((invg𝑌)‘𝐺))) ≤ if((𝐷𝐹) ≤ (𝐷‘((invg𝑌)‘𝐺)), (𝐷‘((invg𝑌)‘𝐺)), (𝐷𝐹)))
15 deg1suble.m . . . . 5 = (-g𝑌)
164, 5, 11, 15grpsubval 17672 . . . 4 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
176, 10, 16syl2anc 565 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
1817fveq2d 6336 . 2 (𝜑 → (𝐷‘(𝐹 𝐺)) = (𝐷‘(𝐹(+g𝑌)((invg𝑌)‘𝐺))))
191, 2, 3, 4, 11, 10deg1invg 24085 . . . . 5 (𝜑 → (𝐷‘((invg𝑌)‘𝐺)) = (𝐷𝐺))
2019eqcomd 2776 . . . 4 (𝜑 → (𝐷𝐺) = (𝐷‘((invg𝑌)‘𝐺)))
2120breq2d 4796 . . 3 (𝜑 → ((𝐷𝐹) ≤ (𝐷𝐺) ↔ (𝐷𝐹) ≤ (𝐷‘((invg𝑌)‘𝐺))))
2221, 20ifbieq1d 4246 . 2 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) = if((𝐷𝐹) ≤ (𝐷‘((invg𝑌)‘𝐺)), (𝐷‘((invg𝑌)‘𝐺)), (𝐷𝐹)))
2314, 18, 223brtr4d 4816 1 (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  ifcif 4223   class class class wbr 4784  cfv 6031  (class class class)co 6792  cle 10276  Basecbs 16063  +gcplusg 16148  Grpcgrp 17629  invgcminusg 17630  -gcsg 17631  Ringcrg 18754  Poly1cpl1 19761   deg1 cdg1 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-gsum 16310  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-ghm 17865  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-subrg 18987  df-lmod 19074  df-lss 19142  df-rlreg 19497  df-psr 19570  df-mpl 19572  df-opsr 19574  df-psr1 19764  df-ply1 19766  df-cnfld 19961  df-mdeg 24034  df-deg1 24035
This theorem is referenced by:  deg1sublt  24089  ply1divmo  24114
  Copyright terms: Public domain W3C validator