![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1mulle2 | Structured version Visualization version GIF version |
Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1mulle2.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1mulle2.t | ⊢ · = (.r‘𝑌) |
deg1mulle2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1mulle2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1mulle2.j1 | ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
deg1mulle2.k1 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
deg1mulle2.j2 | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) |
deg1mulle2.k2 | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) |
Ref | Expression |
---|---|
deg1mulle2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . 2 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
2 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | 2 | deg1fval 24060 | . 2 ⊢ 𝐷 = (1𝑜 mDeg 𝑅) |
4 | 1on 7720 | . . 3 ⊢ 1𝑜 ∈ On | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 1𝑜 ∈ On) |
6 | deg1addle.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
8 | eqid 2771 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
9 | deg1mulle2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
10 | 7, 8, 9 | ply1bas 19780 | . 2 ⊢ 𝐵 = (Base‘(1𝑜 mPoly 𝑅)) |
11 | deg1mulle2.t | . . 3 ⊢ · = (.r‘𝑌) | |
12 | 7, 1, 11 | ply1mulr 19812 | . 2 ⊢ · = (.r‘(1𝑜 mPoly 𝑅)) |
13 | deg1mulle2.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
14 | deg1mulle2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
15 | deg1mulle2.j1 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℕ0) | |
16 | deg1mulle2.k1 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
17 | deg1mulle2.j2 | . 2 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) | |
18 | deg1mulle2.k2 | . 2 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) | |
19 | 1, 3, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18 | mdegmulle2 24059 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 Oncon0 5866 ‘cfv 6031 (class class class)co 6793 1𝑜c1o 7706 + caddc 10141 ≤ cle 10277 ℕ0cn0 11494 Basecbs 16064 .rcmulr 16150 Ringcrg 18755 mPoly cmpl 19568 PwSer1cps1 19760 Poly1cpl1 19762 deg1 cdg1 24034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-ofr 7045 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-sup 8504 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-mulg 17749 df-subg 17799 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-subrg 18988 df-psr 19571 df-mpl 19573 df-opsr 19575 df-psr1 19765 df-ply1 19767 df-cnfld 19962 df-mdeg 24035 df-deg1 24036 |
This theorem is referenced by: deg1mul2 24094 ply1divex 24116 hbtlem4 38222 |
Copyright terms: Public domain | W3C validator |